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An arithmetic circuit (respectively, formula) is a rooted graph (respectively, tree) whose nodes are addition or multiplication
gates and input variables/nodes. It computes a polynomial in a natural way. The formal degree of an addition (respectively,
multiplication) gate with respect to a variable x is defined as the maximum (respectively, sum) of the formal degrees of its
children, with respect to x. The formal degree of an input node with respect to x is 1 if the node is labelled with x, and 0
otherwise. In a multi-r-ic formula, the formal degree of every gate with respect to every variable is at most r. Multi-r-ic
formulas make an intermediate model between multilinear formulas (the r = 1 case), for which lower bounds are relatively
well-understood, and general formulas (the unbounded-r case), which are conjectured to have superpolynomial size lower
bound.

On depth four multi-r-ic formulas/circuits computing IMMn,d – the product of d symbolic metrices of size n x n each,

Kayal, Saha and Tavenas (Kayal et al., 2016b) showed a lower bound of   ( / )

2

d r
N

dr



 (where N n2d, the total number of

underlying variables). As a function of N and r, the lower bound is at most 3( / )2 N r  when d =(N/r2), and so for the bound

to remain superpolynomial (as a function of N), r can be at most N1/3. Our work proves a superpolynomial lower bound (as
a function of N) on the same model (but computing a VNP-polynomial), for r as high as (N log N)0.9. It also yields a better
lower bound than that of (Kayal et al., 2016b), when viewed as a function of N and r.

Theorem : Let N, d, r be positive integers such that 0.51N < d < 0.9N and r < (N log N)0.9. There is an explicit N-variate

degree-d multilinear polynomial in VNP such that any multi-r-ic depth four circuit computing it has size
log

2

N N
r

 
    .
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I. Introduction

In the recent years, algebraic computation has been
attracting wide attention. Algebraic computation is a
recurring feature in algorithms for problems such as
matrix multiplication, determinant computation, fast
Fourier transform, factoring polynomials (and
integers), computing gcd etc., which have practical
applications in various technological and scientific
fields. Unsurprisingly, theoretical computer scientists
have closely investigated both the algorithmic and the
complexity theoretic aspects of algebraic operations.

The latter has resulted in the emergence of algebraic
complexity theory – a branch of computational
complexity theory.

Arithmetic Circuits and Formulas

In algebraic complexity theory, many interesting
questions have connection with the efficiency of
computation of polynomials. Of the many models that
are defined to capture the computation of polynomials
in a step-by-step and succinct fashion, arithmetic
circuits seem to be natural and appealing. Section III
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gives a formal description of arithmetic circuits (and
formulas). An example of an arithmetic circuit (which
is also a formula) computing the polynomial x2 + xy +
xz + yz is shown in Fig. 1. Two parameters associated
with an arithmetic circuit are size and depth: they are
defined respectively as the number of edges and the
length of the longest directed path in the circuit.

Fig. 1: An arithmetic circuit computing x2 + xy + xz + yz

Under this model, broadly three kinds of
problems are studied, namely lower bounds, polynomial
identity testing (PIT), and circuit reconstruction.
Roughly, a lower bound problem seeks to show that
every arithmetic circuit computing an explicit
polynomial f must be of at least certain size. In PIT,
the problem is to efficiently check whether a given
arithmetic circuit computes the identically zero
polynomial. It is a highly important derandomization
problem. The circuit reconstruction/learning problem
is as follows: A polynomial f is given as a ‘blackbox’
which has the ability to take as input a field element t
(a query) and output f (t). The goal is to efficiently
design a circuit computing f using few queries to the
blackbox. These three problems have some
fascinating connections among them.

Lower Bounds

Lower bounds are more interesting when the
polynomial f  in question is a ‘naturally occurring’ one,
such as the Detn. Detn is the determinant of an n x n
matrix whose entries are distinct symbolic variables,
making Detn an n2-variate degree-n polynomial. It is
believed that every arithmetic formula computing Detn
requires a superpoly(n) size. In comparison, there is
an efficient – i.e., poly(n)-sized – arithmetic circuit
that computes Detn. On the other hand, consider
Permn, the permanent polynomial. (Permn is obtained
by replacing every every –1 coefficient with +1 in
the polynomial Detn). It is known due to (Bürgisser,

2000) that if the famous conjecture P NP is true (in
the nonuniform setting) then every arithmetic circuit
over  computing Permn must have superpoly(n) size,
assuming the generalized Riemann Hypothesis. This
is restated in terms of classes VP and VNP (Valiant,
1979) – the arithmetic analogues of (nonuniform) P
and NP respectively: P NP (nonuniformly) VP
 VNP over  (under the generalized Riemann
Hypothesis). This connection suggests that working
first towards proving VP  VNP is plausible, and
motivates the goal of proving superpolynomial lower
bounds against VNP-polynomials (i.e. against
polynomial families in VNP).

The lower bound problem has an interesting
connection with derandomizing PIT. Kabanets and
Impagliazzo (Kabanets and Impagliazzo, 2004)
showed that a superpolynomial (similarly, ex-
ponential) lower bound for arithmetic circuits implies
subexponential (similarly, quasipolynomial) time PIT.
In the other direction, Agrawal (Agrawal, 2005)
showed that a polynomial time blackbox PIT algorithm
implies a superpolynomial lower bound for circuits
computing an explicit (PSPACE-computable)
polynomial.

Some Known Formula Lower Bounds

While the conjectured lower bound for formulas
computing Detn is superpoly(n), the best known lower
bound for the same is (n3) (Kalorkoti, 1985). (A
slightly better (N2) bound is known for formulas
computing an N-variate VNP-polynomial)1. This long-
standing wide gap has prompted the community to
consider restricted variants of formulas and prove
better lower bounds for them. Multilinear formulas
are one such variant: in a multilinear formula, the
formal degree of every gate with respect to every
variable is at most 12. In other words, the formula is
syntactically forced to compute a multilinear
polynomial. A polynomial is said to be multilinear if its
degree with respect to every variable is at most 1.
The choice of multilinearity constraint is justified from
the fact that important polynomials such as Detn,
Permn, IMMn,d (which s the (1,1)-th entry of the
iterated product of d symbolic matrices of size n x n
each) are all multilinear.

1The best known lower bound for circuits is (N log N), against
a certain N-variate VNP-polynomial.
2Similarly, multilinear circuits are defined.
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A lower bound of n(log n) on multilinear formulas
computing Detn (and Permn) was shown by Raz (Raz,
2009). Subsequently (Raz and Yehudayoff, 2008, 2009)
showed a superpolynomial lower bound on multilinear
circuits of constant depth computing Detn.

Formulas with High Formal Degree

Keeping in mind the open problem of superpoly-
nomial lower bound on general formulas, particularly
with a multilinear polynomial (like Detn) as the target
polynomial to be computed, it is natural at this point to
wonder how general formulas compare with
multilinear formulas. The total formal degree of a
multilinear formula is bounded by the number of
variables N, whereas that of a general formula is
virtually unbounded (rather bounded by size of formula
which can be much larger than N). This makes it
difficult to adapt many of the prevalent proof
techniques to general formulas, as they seem to only
work when the total formal degree is low. General
formulas, having essentially a free hand on the
maximum formal degree, can employ ‘clever’
cancellations of high degree monomials at intermediate
gates and use this possibility to efficiently compute
some otherwise hard multilinear polynomials. For
example, the best known circuit of depth three3

computing Detn (which is of degree n) has formal

degree ( )nn (Gupta et al., 2013). This prompted
Kayal and Saha (Kayal and Saha, 2015) to turn the
attention to high formal degree models and define
multi-r-ic formulas.

Multi-r-ic Formulas

In a multi-r-ic formula the formal degree of every
gate with respect to every variable is at most r. Clearly,
multilinear formulas are the r = 1 case of multi-r-ic
formulas. The circuit shown in Fig. 1 is a multi-2-ic
formula (albeit computing a non-multilinear
polynomial). Multi-r-ic formulas, allowing the total
formal degree as high as r times the number of
variables, form an intermediate model between
multilinear and general formulas.

Homogeneous Formulas

Another direction of attack could be to first reduce
general formulas to homogeneous formulas and then
prove a prove a lower bound on homogeneous

formulas. A formula is homogeneous if every gate in
it computes a homogeneous polynomial. (It follows
that the total formal degree of a homogeneous formula
is ‘low’, in fact exactly the degree of the polynomial
computed). However, we do not know of any
efficient4 formula homogenizing algorithm (although
such an algorithm is known for circuits (Strassen,
1973)), unless the degree of the polynomial computed

is as low as
log

log log

N
O

N

 
    (Raz, 2013). Nevertheless,

a homogenous formula is an interesting model in its
own right and proving superpolynomial lower bounds
for it would be a great progress.

Depth Reduction

Yet another possible route to proving superpolynomial
formula (in fact, circuit) lower bound goes via depth
reduction. A series of works (Valiant et al., 1983;
Agrawal and Vinay, 2008; Koiran, 2012; Gupta et al.,
2013; Tavenas, 2013) imply that any arithmetic circuit
of size s computing an N-variate degree-d polynomial
can be transformed into a depth three circuit of size

( log( ) log )2O d ds N  (provided the underlying field is of
characteristics zero). Hence if one shows a sufficiently

high superpolynomial lower bound of ( )dN   on depth
three circuits computing a VNP-polynomial, then a
superpolynomial lower bound on general circuits
immediately follows, provingVPVNP.  An important
point here, relevant to the preceding discussion, is that
the depth three circuit resulting from the depth
reduction potentially has as high a formal degree as

( log( ) log )2 d ds N . We note that a similar depth reduction
result also holds for homogenous depth four circuit,
but there the formal degree is not high. In essence,
these depth reduction results show that low depth
circuits, particularly depth three and depth four circuits,
serve as an interesting testbed for proving lower
bounds.

Previous Works on Multi-r-ic Formulas

Kayal and Saha (Kayal and Saha, 2015) proved a
( / 2 )25

2 N r  lower bound on multi-r-ic formulas of depth

three, computing a certain (non-multilinear)
polynomial. The choice of depth three is natural: it is
the smallest depth at which we do not know of a

3over fields of characteristic zero 4costing only a poly-size blowup
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superpolynomial circuit/formula lower bound5. As
mentioned before, another important motivation for
depth three (and four) comes from the depth reduction
results.

Kayal, Saha and Tavenas (Kayal et al., 2016b)
improved the dependence on r and showed a lower

bound of   ( )d
n
r


for depth three multi-r-ic formulas

computing IMMn,d.  Further they showed a lower

bound of   ( / )1.1/
d r

n r


 for multi-r-ic depth four

formulas computing the same polynomial. They proved
an improved lower bound of 2(N) on depth three multi-
r-ic circuits (computing a multi-r-ic VNP-polynomial).
(Kayal et al., 2016b) also showed that a certain
polynomial computed by a small multi-r-ic formula of
depth three is ‘hard’ for multi-r-ic homogeneous
formulas of arbitrary depth. The underlying hope is,
techniques used to prove depth three and depth four
multi-r-ic formula lower bounds will shed some light
on general multi-r-ic fomulas just like in the multilinear
(r = 1) case – for instance, the proof of multilinear
formula lower bound using log-product formula (Raz
and Yehudayoff, 2009), which is a kind of multilinear
depth four formula.

II. Our Results

While (Kayal et al., 2016b) show a nontrivial lower
bound on depth four multi-r-ic circuits for r < N1/3,
we give a lower bound on the same model that remains
superpolynomial for a wider range of r (see discussion
after the theorem).

Theorem 1. Let N, d, r be positive integers such
that 0.51N < d < 0.9N and r < (N log N)0.9. There is
an explicit N-variate degreed multilinear polynomial
in VNP such that any multi-r-ic depth four circuit

computing it has size
log

2
N N

r

 
   .

Comparison with Previous Results

Better Range on r

In (Kayal et al., 2016b), a lower bound of
2

d

rN

dr

 
   

  

5In the context of superpolynomial lower bound and a constant
depth like three or four, we use terms circuits and formulas
interchangeably. This is because when the depth is a constant,
the circuit-to-formula conversion only costs poly-size blowup.

was shown for multi-r-ic depth four circuits computing
IMMn,d where N  n2d. For the bound to remain

superpolynomial, r can be at the most min ( , )
N

d
d

. The

expression min ( , )
N

d
d

 is maximized at d = N1/3, and r

has to be less that N1/3. We show a lower bound of
log

2
N N

r

 
    for d  [0.51N, 0.9N] and r < (N log N)0.9

which remains superpolynomial in this range for r.
Observe that a higher range for r essentially means
we prove lower bound for newer classes of depth
four circuits.

Improved Lower Bound

For any fixed function r = r(N), (Kayal et al., 2016b)’s

lower bound of
2

d

rN

dr

 
   

  
 is maximized (as a function

of N and r) to 3
2

N

r

 
     at 2

N
d

r
     . In comparison,

Theorem 1 shows a bound of
log

2
N N

r

 
   , which is an

asymptotically better function of N and r.

Extending the Result of Raz and Yehudayoff (Raz
and Yehudayoff, 2009)

The best known lower bound for multilinear (r = 1)

depth four circuits is ( log )2 N N  (Raz and Yehudayoff,
2009). Our result can be seen as an extension of this
lower bound to multi-r-ic depth four circuits, although
the proof techniques in (Raz and Yehudayoff, 2009)
and in here are quite different. In particular, (Raz and
Yehudayoff, 2009) used rank of a partial derivatives
matrix as the measure whereas we use the dimension
of shifted partial derivatives, denoted as SP (see below
for more details).

Proof Outline and Comparison with Previous
Proof Techniques

The proof of Theorem 1 follows a template for depth
four circuit lower bound that is already existing in the
literature, particularly in (Kayal et al., 2016b) and in
related prior works. We briefly describe the proof
outline before listing the differences with (Kayal et
al., 2016b). The proof has the following structure:

1. Reduction to low-bottom-support depth four
circuits (step 1): Consider a depth four multi-
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r-ic circuit of ‘small’ size computing a ‘hard’
polynomial H. At first, we show that there exists
a restriction of the circuit (i.e. setting of some
variables to field constants in the circuit) which
converts it into a more structured circuit called
a low-bottom-support depth four circuit
computing a restriction of H (say, F). Section
III has the precise definition of low-bottom-
support depth four circuits, and the reduction to
this kind of circuits is formally stated in Lemma
3 (Section IV).

2. Lower bound for low-bottom-support circuits
(step 2): In this step, we show that any low-
bottom-support depth four circuit must have high
size (in particular, high top fanin) in order to
compute F from step 1. Lemma 4 (which is
stated in Section IV and proved in Section V)
has the formal statement of this lower bound.
The bound is achieved by proving (in Lemma 5)
that circuits of this kind having low top fanin
have a low shifted partials measure (defined
in Section III), and subsequently proving in step
3 below that F has a high measure. Here, a
measure is a function that maps polynomials to
integers.

3. Constructing the hard polynomial H (step 3):
Finally, a VNP-polynomial H having high
measure is constructed in this step. For this, we
pick a variant of the Nisan-Wigderson
polynomial, which was defined in (Kayal et al.,
2014, 2016a). The construction is inspired by
the well known Nisan-Wigderson design (Nisan
and Wigderson, 1994) and Reed-Solomon codes
(Reed and Solomon, 1960). Basically, H is
defined in such a way that its restriction F is a
multilinear polynomial whose monomials are
sufficiently ‘far’ from each other. In this sense,
the monomials correspond to codewords of a
good code. The precise construction of F is given
in Section VI, and that of H (using the
construction of F) is given in Section IV. Lemma
6 (which is stated is Section V and proved in
Section VI) shows that F has a high measure.

The above three steps together imply a high lower
bound on the size of any depth four multi-r-ic circuits
computing H. As mentioned before, much of the proof
machinery is borrowed from earlier works. However,

we opt to present the proof in detail not only because
of self containment but also because our parameter
settings are often different from that in prior works.

The difference between (Kayal et al., 2016b)
and our proof is in the exact choice of the measure
and the hard polynomial:

1. The choice of the measure: (Kayal et al.,
2016b) introduced a measure called shifted
skewed partials, a variant of an already existing
measure (defined in (Kayal, 2012)) called shifted
partials (SP). For our proof, SP suffices. (Kayal
et al., 2016b)’s focus was to get the lower bound
as a function of both N and d i.e., the number of
underlying variables and the degree of the
polynomial computed respectively. For low
degree (and IMMn,d as the target polynomial),
(Kayal et al., 2016b) found that a certain ‘skew’
between two sets of variables, with suitable
parameters, was crucial in obtaining a better
lower bound. However, for high degree, it seems
that the skew does not offer an added advantage.
Instead, we use SP itself as the measure and
prove an improved bound for a high degree
range. The improvement also stems from the
different hard polynomial we choose.

2. The choice of the hard polynomial: (Kayal et
al., 2016b) used IMMn,d, a VP-polynomial,
whereas our proof works with a VNP-
polynomial, ensuring that the latter has a
sufficiently high SP measure.

III. Preliminaries

We use a bold letter, like x, y etc., to denote a set of
variables. Elements of x are denoted by x1, x2, ... etc.
and are called x-variables. We denote with x   the
set of monomials in x-variables of degree at most  .
Let f be a polynomial. Then degx f denotes the degree
of f with respect to variable x, and deg f denote the

total degree of f. Also, for sets S and S  of polynomials,

expressions , / ,f S S f  and S S   naturally denote the

sets {fg : g  S}, {g/f : g  S} and { : , }gg g S g S   
lively, [n] denotes the set {1,2,... ,n} and  the set of
natural numbers. For a set x and integers a < b, the
set of all subsets of x of size between a and b

(inclusive) is denoted by  [ , ]a b
   x , and simply by  a

x
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when a = b. ‘log’ and ‘ln’ denote logarithms to base
2 and base e respectively. Sometimes we use the term
poly(n) to mean nO(1). We assume N, the number of
variables, to be sufficiently large (so as to legitimize
inequalities that hold asymptotically). Also, sometimes
we omit floor (  ) and ceil (  ) notations for real-
valued functions of N, d etc. for simplicity of
presentation, without affecting any of the implications.

Some Well-known Bounds

For a real number x,

1 + x < ex. (1)

For integers 1 < k < n,

.
k k

n n en
kk k

                 (2)

Chernoff Bound

Let X be the sum of several independent 0-1
random variables. Then for any constant  > 0,

Pr[X > (1+)E[X]] < e–2E[X]/3,

Pr[X < (1+)E[X]] < e–2E[X]/3.

Arithmetic Circuits

We specify some of the concepts, stated in Section I,
in a bit more details. The reader familiar with these
may skip this part. An arithmetic circuit is a directed
acyclic graph in which every node with in-degree 0
(called input node) is labelled with a variable or a
field element, and every node with positive in-degree
is labelled with either ‘+’ (in which case the node is a
addition gate) or ‘x’ (in which case the node is a
multiplication gate). If there is an edge from a node
u to a node v then u is called a child of v. With every
node we associate a polynomial and say that the node
computes the polynomial, as follows: An input node
is said to compute what it is labelled with. A sum
(respectively product) gate is said to compute the sum
(respectively product) of the polynomials associated
with its children. We consider circuits which have
exactly one root, i.e. the node with out-degree 0, and
a circuit is said to compute the polynomial its root
computes. Also, we allow edges to be labelled with
field constants. If an edge from node u to node v is
labelled with a constant  and u is computing a

polynomial f then v considers f, rather than mere f,
as the input coming from u.

The size of a circuit is the number of edges in it.
The depth of a circuit is the length of the longest path
from an input node to the root. An arithmetic circuit
in which all nodes have out-degree at most one is
called a formula.

Depth Three and Depth Four Circuits

By a depth three circuit (also called a  circuit)
we mean a circuit that has a top addition gate followed
by a layer of multiplication, gates and finally a bottom
layer of addition gates. Similarly a circuit with a
addition gate on top, followed by a layer of
multiplication gates, then a layer of addition gates
again, and finally a bottom layer of multiplication gates
corresponds to a depth four circuit (also called a
 circuit). Further if the monomials computed
at the bottom layer of multiplication gates of a depth
four circuit are such that each of them has at most 
variables appearing in it, then we say that the depth
four circuit has -bottom-support.

Formal Degree

The formal degree of an input gate g with respect to
a variable x is defined to be 1 if g is labelled with x,
and 0 if g is labelled with a different variable or a
field element. The formal degree of a sum.
(respectively product) gate g with respect to a
variable x is defined to be the maximum (respectively
sum) of the formal degrees of its children with respect
to x.

Multi-r-ic Formulas

Let r be a positive integer. A multi-r-ic formula is an
arithmetic formula such that every gate in it has formal
degree at most r with respect to every variable. If r =
1, a multi-r-ic formula is called a multilinear formula.
A polynomial is said to be multilinear if the degree of
every variable is at most one in every monomial of
the polynomial. Clearly, multilinear formulas compute
multilinear polynomials.

Arithmetic Complexity Classes

A family of polynomials {fn} over a field , indexed
b y n > 1, is in the class VP if there is a polynomial p :
   such that for every n, fn has at most p(n)
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variables, has degree at most p(n) and can be
computed by a circuit of size at most p(n). A family
of polynomials {fn} over  is in VNP if there is a
polynomial family {gn} in VP and polynomials

, :p p     such that

f(x1, ..., xp(n)) =

1 ( ) 1 ( )

( )( ) [0,1]1,..., ( )

( ,..., , ,..., ).
p n p n

p nw wp n

g x x w w


 




It is clear that VP  VNP. In a later section, to
check whether a polynomial fn is in VNP we use
Valiant’s criterion: If there is a poly(n)-time
algo rithm to output the coefficient of a given
monomial in fn then fn  VNP (Valiant, 1979).

The Shifted Partials Measure

Let  be a field. For integer parameters k,  > 0, the

shifted partials dimension is a function SPk,  : [x]

  defined as follows. Let f  [x]. For any

multilinear degree-k monomial  = xi1
xi2

... xik
, we

write f to denote
1 2

...

k

i i ik

f

x x x


   . Also, for a set S

of polynomials we write S to denote the set
{ : }f f S  , which will be convenient in Section V..
Let k f denote the set { :f   : is a multilinear
monomial of degree k}. We define

def

,
( ) = dim(spam ( ))k

k
f f  x 

SP 
(3)

The following property is easy to establish.

Proposition 2 : (Subadditivity). Let f, g[x]. Then

,
( )

k
f gSP < , ,

( ) ( )
k k

f g SP SP .

IV. Proving Theorem 1

In Section VI we describe a multilinear

polynomial ( )
d

F y where y is the set of underlying

variables and d is the degree. Polynomial
d

F  has

mainly two properties:

1. It has | |/ 4001( )k

y  monomials where k = 11
840000 log ,d

r d

and all of them are of degree d , i.e.,
d

F  is

homogeneous.

2. For any two multilinear monomials 1 and 2,

|1\2| is at least 0.006 d . Here 1\2 refers to

the set of variables appearing in 1 but not in
2. Note that |1/2| = |1\2|. We call it the
distance between 1 and 2.

We use
d

F  to define the polynomial H

(mentioned in step 1 of the proof outline in Section
II).

Polynomial H

Let x, u, v be sets of variables of size N0, N0, and
0.02N0 respectively, making a total of 2.02N0 = N
(say) variables. Also let  denote the range [0.957N0,
0.97N0]. Let d be any integer in [0.51N, 0.9N]. Set

d = d – 0.91N0, and so d   [0.06N0, 0.85N0].

Polynomial H, which is N-variate and of degree d ,

is defined as below:

def

( , , ) =H x u v

0.97

: 1

0

( ) .

N

i jd

x i x ji

F u v





     

   
y

yy

y
(4)

Polynomial H is homogeneous and multilinear.

Proof of Theorem 1. Let C be a multi-r-ic depth
four circuit computing H. H defines a polynomial in
VNP, as we will show at the end of Section VI (after

fully describing ( ))
d

F y .

The sparsity of a depth four circuit is defined
as the sum of the fanin of nodes at the bottom
summation layer. If the sparsity of C is greater than

log
1002

N N
r  then so is the size of C and there is nothing to

prove. Hence we assume from now on that C has

sparsity at most
log

1002
N N

r .

A restriction of a circuit means a substitution
of field constants to some variables in the circuit. We
are now ready to precisely state the reduction in step
1 of the proof outline in Section II.
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Lemma 3 : (Reduction to low-bottom-support depth
f o u r  c i r c u i t s ) . There exists a restriction  of circuit
C that converts it into a depth four multi-r-ic circuit

of -bottom-support computing ( )
d

F y , wheree

log20 d d
r      and y is an element of  x .

Proof of the above lemma is given at the end of
the section. Let (C) denote the circuit resulting from
applying  on C. (C) has -bottom-support (due to

the lemma above). Also, r < (NlogN)0.9 =  log
d

do 
  (as

( )),d N   and d d = 0.97N0 < 0.9•|y|. Hence

the lemma below, which formalizes step 2 of the proof
outline in Section II, is applicable on (C).

Lemma 4 : (Lower bound for low-bottom-support
depth four circuits). Let y be a set of variables and

let d < 0.9•|y| and 10 log10
d

d
r  

  be positive integers.

Then every depth four multi-r-ic circuit having -

bottom-support and computing ( )
d

F y , wheree

log20 d d
r      must have top fanin at least

20 510 6.d
r

d

r 


 
  y




Proof of the lemma is given in the next section.
Lemma 4 implies that (C) has top fanin at least

51020
d

rd
r


 
 
   

 
 
 y




1
10 5 log20.10log2020

d
r dd d d

r r

 
           


y


  

 
1

5 log20.10
0.1100.02 log

d
r dN N


 
     





log

,2

N N
r

 
   (5)

where Equation (5) follows from the fact that d 

0.02N (since d > 0.51N), r < (NlogN)0.9, and

0.97 .
0.02

Ny  Thus, C too must have top fanin (and hence

 size)
log

.2
N N

r

 
   

Proof of Lemma 3

The proof uses the probabilistic method. We begin by
describing the sample space of restrictions.

Restriction R. Given a subset R x , let R

denote the following restriction (substitution) on some

variables in . x u v  If R   then

1. assign 0 to variables in x \ R,

2. assign 0 to ui’s where xi R and assign 1 to the
other ui’s, and

3. assign 0 to vj’s where j > 0.97N0 – |R| and 1 to
the other vj’s.

Otherwise, assign all variables 0. We note that

if (and only if) |R|   then R(H) = ( )
d

F R . Too

elaborate, after Step 2 above, terms in H corresponding

to ( )
d

F y  vanish for every proper superset y  R.

Similarly, after Step 3, terms in H corresponding to

( )
d

F y vanish for every proper subset y  R.

Random restriction of C. Recall that C
computes H(x, u, v). Consider forming the set R x
randomly as follows: Independently, with probability
0.96 pick every x-variable and include it in R. Now,
to prove Lemma 3 it suffices to show that

PrR[R(c) has -bottom-support and

computes ( )
d

F y for some ] 0.
    

x
y

Equivalently, by union bound, it suffices to show

that PrR[E1] + PrR[E2], where E1 is the event that

R(C) has bottom support greater than  and E2 is the

event that for every ( ),
xy R(C) does not compute

( )
d

F y .

Let C  denote the set of monomials computed

at the bottom multiplication gates of C. (Thus C is

6The same lower bound holds for a range of i and r sat isfying

1000log |y| < r < d /5000, provided the parameter k used in the

construction of ( )
d

F y is adjusted suitably..
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at most the sparsity of C). For a monomial , let 
denote the set of variables appearing in . Then

PrR[E1]

[ ( ) ( ) s.t. ]
R R

Pr
R

C      

[ s.t.Pr
R

C     x  and

( ) 0]
R
  

0.96C   (from union bound)

20log log
1002 0.96N N d d

r r   

0.01
log

2
N N

r


 (as 0.029 )d N

To upper bound PrR[E2], we note that E2 is

equivalent to the event R  . Hence

2
[ ]Pr Pr R

R R
E   

20.01 0.961
3 0.96 2.022 ,

N

e
     

by noting that E[|R|] = 0.96N0 =
0.96
2.02

N  and applying
Chernoff bound. Clearly, PrR[E1] + PrR[E2] < 1, as
required.  

V. Proving Lemma

A depth four multi-r-ic circuit with-bottom-support
is of the following form:

1 2
... ,

s
T T T    

1 2
... [ ],

i i i imi
T Q Q Q i s    (6)

where, for every i  [s] and every j  [mi], Qij 
[y] is a polynomial such that

1. every monomial in it contains at most variables
(due to -bottom-support), and

2. for every x  y,
1

deg

m

x ij

j

i

Q r



(due to multi-r-icity).

Proof of Lemma 4. Suppose that  computes

( )
d

F y . Then our task is to show that the top fanin s

is high.

Suppose that we estimate an upper bound U =

U(k,  ) on ,
( )

k i
TSP , for every i  [s]. Then

Proposition 2 implies that

,
( ) .

k
sU SP

Suppose also that we find a lower bound L =

L(k,  ) on ,
( )

k d
FSP , perhaps by fixing parameters

k,  . Then, since  computes ,
d

F it follows that

, ,
( ( )) ( )

k kd
L F sU   y SP SP

/ .s L U 

To estimate U, we make use of the lemma
below.

Lemma 5. (‘Low’ SP measure for circuits).
For any i  [s] and positive integers k,   where k
< 2|y|/ + 1.

,

3 | | / | |
| |

( ) .
k i

k r
k

T          
y y

y

SP

Proof of the lemma is at the end of this section.
Let  = 0.0055. We fix

11
1

21 840000 log

d d
k

r r d




  
 

 (7)

and

 | 4001

0.006
.

| /

d

ln k


 

y

y
y




(8)

For such  , it can be shown that   > 400 • |y|,
from which follows an inequality we require shortly:

12
.

1 11





y 


(9)

To estimate L we use the following lemma:



916 Sumant Hegde and Chandan Saha

Lemma 6. (‘High’ SP measure for
d

F ). For

integers k,   fixed as above,

,

| | / 4001 | |
| |

1
( ) .

2k d k
F         

y y
y

y

SP

In the next section we give the description of

( )
d

F y  and then prove Lemma 6.

From Lemmas 5 and 6,

   
   

| |/4001

( )3.| |/

1
. .

2
.

k

k r
k

s




 


yy
y

yy
y





 

 

| |/4001

3.| |/
4

( )...(1 )1
. .

2 !
( )...(1 ) )

.
!

k

k r k r  

 


   

y

y

y
y

y
y

 

 

 
 

/4001

3. /

1
.

2

. 1
1

k

k
k r 


   

y

y
y



 
 

/4001

.3. / 1

1
.

2

.

k

k r

k e


 


y

yy 
(from (1))

 
 

/4001

0.006 .
. .

3. / 10 006

1
.

2

.

k

d k r

d
k e





 


y

y y

y y

 
 

 
   

/4001

.3. / /4001 10 006

1
.

2

.

k

k r

d
k k








y

y
y y


 

(from (8))

 
   

/4001

3. / /4001 0.0055

1
.

2

.

k

k r

d
k k





y

y y  (from (9))

(1 )
1

. .
2 3 . 4001

kk r

dk

e k



 

      
 

y

y



  (from (2))

1 211
21.211

. .
2 3 . .21 4001

d

r
rd

e r d







 
      

 

y

y






1 2120
21 211 1

. . .
2 3 21 . 4001

d

r

d

e r




 
 
          

 
y





21 20 21.211 1
. . .

2 3 21 . 4001

d

rd

e r


              y





520 10

.

d

rd

r

 
   y






In the rest of this section we prove Lemma 5.

Proof of Lemma 5. For brevity we drop the
subscript i and rewrite Equation 6 as

T=Q1...Qm.

We begin by observing that deg T < |y|.r, and

that deg Qj < r for every .j m  Now, by grouping

Qj’s that have degree less than r/2 and multiplying
out, it is possible to ensure that every grouping has
degree between r/2 and r (except possibly one last
grouping with degree less than r/2). This grouping
operation does not cost us as the lower bound in
Lemma 4 is on the top fanin. Therefore, we assume

without loss of generality that for every 1 ,j m

deg / 2.jQ r

deg ( 1) / 2T m r

. ( 1) / 2r m r y

2 / 1 3 / .m y y
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For the case m < k, we note that the elements

of 1( ... ).k
mQ Q  y   are of degree at most

1deg( ... ) .mQ Q m r k r    Hence ,kSP 

1( ... )mQ Q <  [ ] ,k r y
y


 trivially proving the bound. For

the case k < m, we use the claim below.

Claim 7. If k < m then

( )k
j

j m
Q

  
span ( . .

m
m k

k r
F j

j AA

Q







 
 
  

y

Proof. We induct on k. The case k = 0 is trivial.

Suppose that the claim is true for 1.k k  To prove
the case for k, we consider the element

1 2 ... :
k

k
y y y j j

j m j m

b Q Q

1 2 3 ... ky y y y j
j m

b Q

  
1

span ( . ,
m

m k

k r
F y j

j AA

Q







 
  
  

y




from the inductive hypothesis. Let k rQ y
  be a

polynomial. Then from the product rule,

1y j
j A

Q Q

1 1
. .y j y j i

j A i Aj A
i j

Q Q Q Q Q 

 1
span . ,

A
A

k r
F i

i BB

Q







 y

as deg Qj < r for every j. Hence

    1

span .
m A

m k A

k r
F i

i BA B

b Q

 



 

 
 
  

y 

  
span .

m
m k

k r
F j

j AA

Q







 
 
  

y 

From the claim above it follows that

 
.k

j
j m

Q 



 
  
 
 y 

  
span .

m
m k

k r
F j

j AA

Q



 



  
      

y 

,k j
j m

SP Q

. k rm

k
  

   
y 

3 /
. ,

y k ry

k y



as 3 / .m  y 

VI. Constructing ( )dF y  and Proving Lemma 6

This section is devoted to constructing the hard
polynomial d

F F   mentioned in step 3 of the proof
outline in Section II and showing that it has a high SP
measure. In Section IV we mentioned two properties

( )
d

F y  would have. The claim below (which is
essentially taken from (Chillara and Mukhopadhyay,
2014) with suitable adjustments) makes them precise
and shows how they ensure a high SP measure for F,

something that Lemma 6 claims. Let  /4001 .kD  y

Claim 8. Suppose ( )k
d

F y  contains at least

 /4001
k

y
 monomials (as individual elements) such that

they all are of the same degree and have pairwise

distance at least 0.006 .d  Then  ,k d
SP F

   /40011
.

2 k
 yy
y
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Proof. Let µ1,...,µD be the monomials present in

( ),k
d

F y  of degree d0 (say) each, and pairwise

distance at least . Then from the inclusion-exclusion
principle

 .{ }a a Dµ
y 

1 1

. . ) ( . ) .
D

a a b
a a b D

µ µ µ  

   
  y y y  

(10)

Clearly  . .aµ    y
yy y    Next, let us

estimate an upper bound on the size of the set

,( . ) ( . )a b a bµ µ I  y y   (say). It is given that the

elements of Ia,b are of degree at most 0d   and

that the LCM(a, b) is of degree at least d0 + .
Hence

, , ,/ ( )a b a b a bI I LCM µ µ

0 0( )d d     y 

.
  

   

y

y



1

( . ) ( . )a b
a b D

µ µ 

  
  y y 

,
1

a b
a b D

I

2

2

D   
   

y

y



 2 ...(1 )
.

2 !

D  


y

y

 

( )...(1 )
.

( )...(1 )

    
 

y

y

 
 

2

. . 1
2

D    
      

y
y

yy




. . .
2

D
D e

 

 

   

y

yy

y


    (from (1))

.
2

D  
   

y

y


 (from (8)).

Plugging the bounds in Equation (10) we get

[ ].{ }a a Dµ
y 

. .
2

D
D
    

       

y y

y y

 

/ 40011
,

2 k

  
      

yy

y



by plugging the value fort D. Now [ ],.{ }a a Dµ
y 

beinig a set of monomials, is linearly independent.

Hence    /4001
,

1
( ) .

2k l kd
SP F  yy

y


 

Description of ( )ydF

We show an explicit construction of same degree
m o n o m i a l s 1,...,D, with large pariwise distance,
using y-variables. Let z be a subset of y, of size

4000 4000
. ,

0.9 4001 4001

d k
n

   y


 as 0.9. .d  y  Note

that ( ).n N  We partition z into 0log

n
n

c n
  (say)

disjoint subsets of size c log n each and call them
( )

0, [ ].iZ i n  Here c is a constant in [1000, 2000],
chosen in such a way that n0 is a prime number. Now,
we apply the following claim, whose proof is
essentially a well known probabilistic argument (with
an associated greedy algorithm) for existence of codes
with good distance (akin to the Gilbert-Varshamov
bound (Gilbert, 1952; Varshamov, 1957)). The proof
is given in the next subsection.

Claim 9. For every 0[ ],i n  there is a set M(i) of n

multilinear monomials (in Z(i) variables) each of degree

4001
0.9. .

4000
c log n and pairwise distance at least

0.007c log n. Furthermore, M(i) can be generated in
poly(n) time.
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Thus M(i) has at least n > n0 monomials. Let us

identify
0

( )( )
1 ,..., ii

n  with the (lexicographically first

n0 many monimials of M(i). Let  be a prime field of
size n0. Elements of K will be denoted with 1,2,3...,n0.

Finally, we define b, where ,b D  as the b-th

element of the following set that is ordered according
to lexicographic ordering of the coefficient vectors of
the defining univariate polynomials.

 0
0

( )
( )

[ ].
deg 0.1 ,


def i
h i

h ti n
h n

h is monic

L 
 

  
 
  


(11)

For example , the first element of L is the one
corresponding to the mon ic, degree-0.1n0 univariate

polynomial [ ( )]h t  whose coefficient vector is
lexicographically the smallest. At the end of this

section we show that indeed L D  (so the definition

above, which is inspired by Reed-Solomon codes,
makes sense). Observe,i’s multilinear and of degree

.d k

Defining ( ).
d

F y  The construction uses the idea of

‘code composition’ that ensures ( )
d

F y  is a VNP-

polynomial (see Subsection iii). Fromy\z one can from

 \
k Dy z  many multilinear monomials of degree k,

as \ / 4001.y z y  Let us call these monomials

1 2 ... ,D      under lexicographic ordering. Then

we define ( )
d

F y  as follows:

1

( ) .
D

def

b bd
b

F µ V

y (12)

Clearly ( )
d

F y  is multilinear and all its

monomials are of degree .d  Since

( ) ,
bv b b bµ v µ  ( )k

d
F y  contains b’s as

required by Claim 8. The other requirement, namely

that d
F  -monomials have a minimum pairwise distance

of 0.006 ,d  is also satisfied: Consider two

monomials bb and aa, where .b a  It suffices to

show that \ .b aµ µ  Indeed, we have

0

( )
( )

[ ]

i
b h i

i n

µ  and
0

( )
( )

[ ]

,i
a g i

i n

µ
 for two different

monic univariate polynomiala , [ ]h g t  of degree

0.1n0. If R is the set of at most 0.1n0 roots of h – g in

[n0] then clearly ( ) ( )h i g i  for 0[ ] \ .i n R  Hence

from Claim 9 we have ( ) ( )
( ) ( )\ 0.007 log ,i i

h i g i c n

for 0[ ] \ .i n R  As M(i) and M(j) are variable-disjoint

for ,i j  we have

\b aµ µ

0

( ) ( )
( ) ( )

[ ]

\i i
h i g i

i n

0

( ) ( )
( ) ( )

[ ]\

\i i
h i g i

i n R

0 0( 0.1 ).(0.007 log )n n c n 

> 0.006n

0.006 ,d

where the last step follows from the expression for n
and noting therein that ( )k o d  (from (7)).

Verifying that .L D  The nonzero pairwise

distance implies that { : [ ],L h h t 

0deg 0.1 , is monic} ,h n h  which is at least

0 0
0.1 0.1

0 . n nn  Hence 0 0log 0.1 logL n n

0.1. ( )
2

n
d

c
  (for  large enough n). On the other

hand,  /4001 .
log log log

4001

k

k

e
D

k

 
    

y y
 =
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.
log ,

4001

e
k

k

y
 from Bound (2). But from Equation (7),

,
log

d
k O

r d

 
 
 


  thus log  D O d   as both |y| and

d are ( ),N  proving .L D

Proof of Lemma 6. ( )
d

F y  is in VNP (see last

Subsection) and meets the conditions required by
Claim 8, which implies the result. 

A Greedy Algorithm

Proof of claim 9. For brevity, let
4001

0.9.
4000

  <

0.91. In Algorithm 1 we outline a greedy way to
construct the required monomials. Clearly,  Algorithm
1 runs in poly(n) time, and the output monomials have
the required degree and distance. It remains to show
that as ( ) ,iM n  there is some j j  such that j

can be included in ( ) .iM  We use the probabilistic
method for this purpose, as below.

Algorithm 1: A greedy a algorithm to generate distant
monomials

Input : The variables Z(i)

Output : The set of monomials M(i)

1 Let 1, 2, ...,  i, where  log
log ,c n

c nt    be
multilinear monomials of degree log ,c n  in
lexicographical order.

2 M(i) := 

3 j := 1

4 while |M(i)| < n and j < t do

5 if |j\ | > 0.007c log n for all M(i) then

6 | ( ) ( ): { }i i
jM M  

7 end

8 j := j + 1

9 end

10 return M(i)

Consider picking every variable independently

with probability 1
0.99


 and multiplying the picked

variables to form a monomial µ  (say). Then

deg . log .
0.99

E µ c n


 From Chernoff bound,

Pr deg 0.99. . log
0.99

µ c n


 
  



20.01
. . log

3 0.99
c n

e


0.00003 logc ne

= e1 (say).

Let  be some fixed monomial from M(i). Then

\E µ  

log
1

0.991

c n

i

 
 

 
  

 

. 1 . log .
0.99

c n


  
  




Thus,

Pr \ 0.1.( . 1 . log )
0.99

µ c n


  
  

    




20.9 . . 1 . log
3 0.99

.
c n

e

  
 
 

 




Pr \ 0.007 logµ c n   

0.022 logc ne ,

from Chernoff bound. From union bound, the

probability that there is a monomial ( )iv M  with

( , ) 0.007 logv µ c n   is at most

( ) 0.002. log.i c nM e
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0.022 logc nne

0.001 log 0.022 log.c n c ne e

0.021 logc ne

2e   (say).

Thus,  has degree at least logc n  and distance

\v µ  at least 0.007clogn for all ( )iv M  with

probability at least 0.00003. log
1 21 1 c ne e e

0.021 log 0c ne   (for n large enough). In other words,

there exists a multilinear monomial  with distance
(from monomials of M(i) as least 0.007log n and degree

at least . log .c n  However we want the degree to be

exactly . log .c n  We can chop off a few variables

from µ to ensure that. Such a chopping results in

\ \ 0.007 log ,µ v v µ c n  as desired. 

VNP Membership of dF  and H

Proof of ( ) .
d

F y VNP  We recall Equation (12).
According to Valiant’s criterion, it suffices to give a
poly(|y|)-time procedure that checks if a given
monomial equls bb for some .b D  (The co-
efficient is 1 if it does and 0 otherwise.) The procedure

is as follows. We call the z-part of the input monomial
as b, where b is unknown. We determine b by writing

b in the form
0

( )
( )

[ ]

i
h i

i n



  (as per Equation (11) and

determining h first, using polynomial interpolation.
From h, the index b can be computed efficiently as
the ordering of the set L (in Equation (11)) is quite
explicit. Finally, from b we can efficiently compute b
following lexicographic ordering and check if the non-
z-part of the input monomial is vb as well. All the
steps above can be done in poly (|y|) time.

Proof of ( , , ) .
d

H x u v VNP  We recall Equation

(4). H is constructed in such a way that for every

 x ,y   a unique monomial in u and v variables is

attached to the monomials of ( ).
d

F y  Thus, given a

monomial, we can easily find which d
F   its y-part

potentially ‘belongs to’ and then run the procedure

described above that checks membership in ( ).
d

F y
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