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Sexual reproduction is a highly adopted mode of propagation in higher plants. Monocot grass species develop fertile florets
on the spikelet of their inflorescences (panicle). MADS-box containinglSEPTA proteins, together with other transcription

factors play crucial role during floral meristem specificatiogaoogenesis and meristem determinblyike four lagely

redundant SEP genesAmabidopsisfive rice SEP genes display both redundant and non-redundant functions in controlling
reproductive development. LEAFY HULL STERILE1/OsMADS1, member of a grass-specific LaldeekR rice SEP

gene familyis required for specification and development of a fertile floret on the spikelet me€istetADS Irreversibly

promotes spikelet to floret transition by specifying floret meristem identity and repressing spikelet. ittealtty
suppresses reversion of floret meristem to shoot meristem fate. During later stage©sM#AlBS1maintains floret

meristem functions, it also controls floret organ specification and differentiation and determinacy of floret meristem. These
diverse functions of OsMADS1 are brought by its genetic and physical interactions with various other genetic regulators
and forming higher order complexes at different developmental stages. Thus, all functional data in corroboration with
estimated evolutionary divergence time scale of OsMAddBiclade suggest that OsMADOS to-evolved with grasses

and as a key regulator of rice sexual reproductive habit, it has not only retained its conserved functions but also has acquired
some species-specific functions.
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Introduction Model dicot plant,Arabidopsis thaliana
develops raceme-type inflorescence composed of a
main indeterminate inflorescence axis bearing either
a terminal flower or lateral axes with features similar

R ducti in olant beai ith h 1:to main axis at the lateral position (Prusinkiewatz
eproductive stage in plant begins with a phase o al., 2007). Howeverin various other plant species,

transition through change in identity of vegetative shoot inflorescence architecture is relatively more complex.

e}ﬂca_:_hmelz&stem (S_AF]M) to mfloregcence_r.ner]lclsterln Monocot grass species posses a highly branched
(IM). The IMs next either terminate by acquiring flora inflorescence, called panicle. In rice, panicle has a

_menstems (FMs) |dent|_ty or develop Se"efa' main axis (also called rachis) containing several lateral
inflorescence branch meristems (BMs) to provide primary branches (Fig. 1B; Ikedst al, 2004)
higher order inflorescence branching (Prusinkiewicz Secondary branches emerge’on the prin'1ary branches

_T_t al"k2007l; é_ci)ul??tT?]L 20_1?"; Pautleet aI.,ﬁOlB, and spikelets are present on both primary and
anakeetal, )Thus, inflorescence architecture secondary branches (Fig. 1B; lkeegnal., 2004;

in different plant species is established by differential Tanakaet al., 2013; Kyozuka et al., 2014. rice

developmental decisions at IM stage to bring VaLr'ousspikelet is considered to have three florets subtended

E?Eeest ;)lf”ig(l;lgg)ajscence (Prusinkiewier al, 2007; by a pair of rudimentary glumes (Fig. 1C and 1D).

Sexual reproduction is a major mode of propagation
in angiosperms and is widely believed to have evolved
from asexual reproduction (&g et al., 2010).
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Among these, two lower florets are sterile (also called angiosperm plant are regulated by individual and
sterile lemma or empty glumes) and only the single combined functions of MADS-box containing
upper floret is fertile (Fig. 1C and 1D). Therefore, transcription factors, classified idgB, C, D and E
unlike inArabidopsiswhere FMs are directly formed classes (Fig. 2A; Coen and Meyerowitz, 1991;
either on the main or lateral inflorescence axes, inRiechmanret al.,1996; Parct al.,1998; Theissen,
rice, various intermediate meristems are formed after2001; Krizek and Fletche2005) In model dicot plant,
reproductive transition (Fig. 1A). These meristems Arabidopsis thalianafour largely redundant MADS-
are for primary branches (PBMs), secondary box SERLLATA proteins, (SEP1, 2, 3 and 4) function
branches (SBMs) and for the spikelets (SMs) thatas co-factors with Clags, B and C factors and by
finally terminate into floret meristems (FM#)part forming complexes with them, they control
from inflorescence architecture, flower morphology determination of floral organ identities and also regulate
is also diversified in grass-specidsabidopsisFM determinacy of floral meristem (Pelat al, 2000;
develops four floral organs arranged in concentric 2001;Honma and Goto, 2001; Digtal.,2004). The
whorls; from outer to inner whorls composed of four sepl/2/3triple mutants display floral phenotypes
sepals, four petals, six stamens and a carpel. The riceimilar to double loss of B- and C-class functions
floret contains two bract-like structures, a lemma andwhere floral organs are homeotically converted into
a palea (sepal equivalent), a pair of fleshy lodiculessepals (Pelagt al.,2000). Furthermore, C-function
(petal equivalent), six stamens and a central carpegeneAGAMOUSAGQ) fails to activate the expression
(Fig. 1D; Kateret al., 2006; Yoshida and Nagato, of its taget SHAITERPROOFZSHPJ in carpels
2011; Huet al.,2015). of triple mutants (Castillej@t al., 2005).These
observations indicate that SEP genes are required by
SEPALLATA MADS-box Genes are Key Players ABC genes for their role in whorl-specific organ
for Flower Development patterning. Moreoveupon loss of all four SEgenes

Floral organ specification and patterning in an (sepl/2/3/3, the floral organs are converted to leaf-
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Meristem (SAM) Meristem (IM) Meristem (BM) Meristem (SM) Meristem (FM)
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Fig. 1: Reproductive development in rice. (A) Schematic representation showing various meristem transitions during rice
reproductive development. (B) Schematic diagram showing architecture of a rice inflorescence (also called panicle). (C
and D) Morphology (C) and floral diagram (D) of a rice spikelet. Rudimentary glumes (rg) and empty glumes (eg) are
underdeveloped sterile florets. Lemma (le) and palea (pa) enclose inner floret organs; two lodicules, six stamens and
a carpel
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like structure (Dittaet al., 2004). Complementary A
observations of leaf-to-petal conversion phenotypes
upon simultaneous ectopic over-expression of Class
A, B and SEP genes and analysis of protein-protein
interaction, further to support their pivotal role in floral
organ patterning (Pelagt al.,2001; Imminket al,
20009).

B-Class
(AP3/PI)

Members ofABCDE classes have also been Sepal

identified in rice and their modes of actions are
conserved as well as diversified (Fig. 2B). Flower
development in rice also involves some additional
species-specific genetic regulators (Fig. 2B).
Homologs foiISEPgenes are identified in several plant
species but unlike irabidopsis,they often have
discrete and species-specific roles in other plants by
acquiring neo- and sub-functionalization during flower
development (Kotilaineet al, 2000; Uimariet al,

DL (o

A-Class C-Class
(API/AP2) (AG)
E-Class (SEP1/2/3/4)
Petal Stamen Carpel Ovule/
FM
determinacy
Gynoecium

B-Class AP3/PI

(OsMADS2, 4 & 16)

_|

CFoI
(OsMADS32)

2004; Malcomber and Kellogg, 2005; Zabknhal.,

A-Class API/FUL C-Class AG
(OsMADSI5) (OsMADS3 & 58)
AGL6 AGL6
(OsMADSG6) (OsMADS6)

2005; Cuiet al.,2010).SEPgenes have experienced
several gene duplications during the evolution
(Malcomber and Kellogg, 2005; Zalet al.,2005).

E-Class LOFSEP
(OsMADSI)

E-Class LOFSEP
(OsMADSI)

E-Class LOFSEP
(OsMADSI)

They form a clade within the phylogeny of MADS

box genes that can be broadly divided into two clades;
theSEP3clade havinghtSEP3and thd OFSEPclade |
containingAtSEP1, 2nd4 (Malcomber and Kellogg,
2005), each with several subclades. Rice has five E-
class genesl.EAFY HULL STERILE@QHS1)/
OsMADS1, OsMADS5, OsMADS7/45, OsMADSS8/
24 and PANICLE PHYDOMER 2 (PAP2)/
OsMADS34that redundantly and non-redundantly
ensure ‘floret state’ in rice (Katet al.,2006; Cuiet

al., 2010). Of theseDsMADS7and 8 belonging to
SEP3clade, have conserved and redundant functions
in regulating inner floret organ development whereas
others fall into grass-specifi®OFSEPclade and have
acquired species-specific novel functions (Malcomber
and Kellogg, 2005; Cwt al.,2010; Gaeet al,, 2010;
Kobayashiet al, 2010). Simultaneous down-
regulation of four E-class genes in rice (i.e.
OsMADS1 OsMADS5 OsMADS7 and
OsMADSS$ results in a homeotic transformation of
all floral organs but lemma into leaf-like organs that

Lemma

E-Class SEP3
(OsMADS7, OsMADSS8)

| | R

Palea Lodicule Stamen Carpel Ovule/
FM
determinacy

Gynoecium

Fig. 2: Interactions and functions of genetic regulators of

flower development. (A) Combinatorial action of
genetic regulators of floral organ patterning and
floral meristem determinacy in Arabidopsis.
Overlapping expression and interactions of ABCDE
genes regulate floral organ patterning. (B) Schematic
diagram showing interactions and functions of
genetic regulators of floret development in rice. Apart
from conserved and diverged functions of rice ABCDE
genes, other regulators such as OsMADS6, OsMADS32
(CFO1) and DL also play role during rice floret
development. Dashed box indicates a domain where
gene functions non-cell autonomously (gene is not
expressed but has a function)

mimics Arabidopsis sep1/2/3/quadruple mutant OsMADS34ndosmadsl osmads8éuble mutants
phenotypes, suggesting a conserved basic E-clasexhibit obvious defects during reproductive
function in rice floret organ specification and meristem development, suggesting their redundant and non-
determinacy (Cuket al, 2010). Howeverunlike redundant functions in controlling rice flower
Arabidopsis SEBenes, where single mutants display development (Jeoet al, 2000; Prasadt al, 2001,
either none or subtle phenotypes (Pelaal, 2000;  2005; Cuiet al.,2010; Gaet al, 2010; Kobayastét
Ditta et al, 2004), single mutants f@sMADS lor al., 2010).Among all SEPgenes OsMADS34has
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the earliest functions and controls panicle morphology Kobayashiet al, 2010). In this reviewwe will

by regulating spikelet meristem identity (Getaal, describe multiple roles o0©OsMADS1and its
2010; Kobayashit al, 2010). Similar té\rabidopsis interactions with other genetic regulators in ensuring
SEP3 OsMADS7 and 8 together control sexual reproduction in rice (Fig. 3).

differentiation of floret organs such as lodicules,

. Members ofSEPsister clade AGAMOUS-
stamens, carpel and regulate floret meristem )
determinacy (Cuiet al., 2010).OsMADS1is IIEIIFOEI'\?A('EG(ID_EQ)QKT\IglAlagoblo)/(Ogel\;l]Z’l\gg(SSAlg
expressed in floret meristems, lemma/palea and X )/Os an

weakly in carpel primordia (Prasatial, 2001; 2005) 8SMAD88137 _also_ h;;llve f(L;nctilons sim(i)lﬁr tq
and regulates the establishment of floret meristem SMAD _ uring rice F)ret eve opment (Ohmori
identity, patterning of rice floret gans and etal, 2009; Liet al, 2010;Yoshida and Nagato, 201

determinacy of floret meristem (Jeet al, 2000; Duanet al, 2012). mfoYosmadsémutant displays

Prasadet al, 2001, 2005Agrawal et al, 2005; altered palea and lodicule identities, mosaic inner
Ohmorit al. 2009- Cuet al. 2010 Ga@tal. 2010.  °rdans, defective carpel development and loses floret

Li etal, 2010;Wanget al, 2010).The expression of gel\r/liztDeénlndet?r;n;BaczDowr(;—fregr:natiorrll of
OsMADSIis activated by jasmonic acid (JA) during S h miol-2background further enhances

spikelet developmentin rice (Getial, 2014). Thus, mfol phenotypes' (Ohmoet al, 2009). Genetic
fice SEP genes regulate the development of all interaction analysis revealed ti@MADSG&ontrols

reproductive stages, such as panicle and Spikeleprgan identities in the inner three whorls and meristem

morphology floret meristem transition and fate dgt(:/lrl;nl)lr;icyéec:undan't\;igvslth dHSCSe B-dclgss
determination, differentiation of floret organs and (Os §, C-class Qs &nd 58) and D-

meristem determinacy (Jeat al, 2000; Prasaét class genes(sMADS13 whereas it regulates
al. 2005 Cuiet al. 2010: anoet elll 2010 identities of floral meristem and palea together with a

[ l {0sMADSI7)
i A
i osmAs? | PhstAnSH} TOSMADSIZ!
| OsMADSS | | OsMADSI6} gl S
1OsM4ADSISy  \TTTTTTE ' I'Cytokinin|
< |_response |

->
\ (eg /
| €g )
/
Nslp“’(elet Floret Floret Organ Floret Organ Lemma/ Lodicule Stamen Carpel Floret Meristem
eristem Meristem Specification Differentiation Palea Determinacy
> Genetic/physical interaction —> Activation/positive regulation ={ Repression/negative regulation

Fig. 3: OsMADSI regulation of floret transition, organogenesis and floret meristem determinacy. A model showing physical
and genetic interactions of OsMADS1 with various genetic regulators, auxin and cytokinin signaling pathways and
their regulatory functions during entire process of reproductive development in rice. sm; spikelet meristem; fm; floret
meristem; eg; empty glume; le; lemma; pa; palea; lo; lodicule; st; stamen; ca; carpel
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YABBY membey DROOPING LEAF(Li et al, meristem identity on rachis branches in rice (6ao
2011a). InterestinglyOsMADSGalso interacts with  al., 2010; Kobayashét al, 2010). Loss-of-function
OsMADSIand they together control floret meristem mutants ofosmads34/panicle phytomer2display
establishment, organogenesis andmeristemdecreased and abnormal spikelets with elongated
determinacy (Ohmorét al, 2009; Liet al, 2010; glumes and transformation of early spikelets into
Yoshida and Nagato, 20}l Moreovefy a monocot- inflorescence branches (Gebal, 2010; Kobayashi
specific MADS gene,CHIMERIC FLORAL et al, 2010).0OsMADSI1is expressed slightly later
ORGANS1/0OsMADS3also regulates floral organ than OsMADS34and directly represses the
identities in rice, suggesting evolution of multiple expression dDsMADS34n developing panicles (Gao
genetic regulators for floret development in grasseset al, 2010; Kobayastet al, 2010; Khandat al,
(Sanget al, 2012). 2013). ThusPsMADS34ontrols branch-to-spikelet
transition andDsMADS functions spikelet-to-floret
OsMADSL Regulates Genetic Networks Required transition. In addition to their exclusive functions in
for the Spikelet-to-Floret Transition meristem transitions, they together regulate floret
organogenesis in rice as consistent vagimadsl
Molecular phylogenetic analysis of MADS-box genes gsmads34double mutant phenotypes (Gab al,
estimates evolutionary divergence ©6MADS1  2010: Kobayashget al, 2010). OsMADS1also
clade approximately 58-62 million years ago, coinciding interacts with rice C-function gen@sMADS5&nd
with the divergence time-scale of grasses (~60 million controls spikelet meristem reversion (etwal, 2015),
years ago) and therefore, have been predicted tqurther confirming thatDsMADS1functions as a

acquire grass-specific functions (Doyle, 1973; Prasadrepressor of spikelet meristem and activator of floret
et al.,2005; Khandagt al.,2013).Within the grass  meristem identity

species, thd HS1 genes display heterogeneous
expression pattern but their expression in the uppertOsMADS1 Suppresses Reversion from Sexual-to-
florets of the spikelet is conserved (Malcomber and Asexual Reproduction Habit

Kellogg, 2004) OsMADS1is expressed only in the
upper floret meristem of rice spikelet which produces
fertile florets and it is completely excluded from the
glumes which are vestiges of sterile lower florets
(Prasackt al, 2001; Bommeret al, 2005). Loss-of
OsMADS1functions results in a perturbed and
indeterminate floret meristem identity developing

glume/lemma-like repeated floret organs (Jeta,, degenerativepaledder), abnormal floralogans

2000; Prasadt al, 2005Agrawalet al, 2005).This (afo) andphoenix(pho) demonstrate a cooperative

indicates that presence ©6MADS1in upper floret . L
meristem is needed to initiate developmental programsrOIe of OsMADS1and OSMADS15n establishing

to produce fertile florets and in its absence, upper‘EeXual rteprtortlj UCt'Ve. ha|b|ts thnceefmtget :_il.,tf]OlO)a_
floret meristem also takes identity similar to the lower epmutanthas a singie point mutation in the coding

florets. This is also supported by the fact that, ectopicrehglon O]f ﬁnAPl/F.UL'“kt? ge?iioraﬂaigéf
over-expression o0OsMADS1causes a homeotic whereaslonas an epigenetic mutatio

conversion of outer glumes into lemma-like organs Bgusrﬁh?;‘;’lsdguEliTUtigf[;%rlSOthSZf tggse. a_lle;(?s.
(Jeonet al, 2000; Prasaeét al, 2001), further b mu I (;( 0! tu €p ut IV'V'g.t.y
confirming thatOsMADSL1is sufficient to initiate occasionally under certain environmental condition

upper floret-specific developmental program \|/_|vhere neV\r/] shO(t)tstemerged fr?ntw)lthe ro(rjet organs.
ectopically in sterile florets. owever phomutants produce stable pseudovivipary

where all florets are always replaced by young
A regulatory relationship betwegdsMADS1  plantlets in mutant panicles @ig et al, 2010).

and OsMADS34plays an important role during Interestinglythese plantlets have capability to produce

spikelet-to-floret transitiorDsMADS34s expressed  roots and tillers when transferred to field and

in developing inflorescences and is required for spikeletpropagate through asexual mode in next generation

Distinct functions 0fOsMADS1in different tissues

or at different developmental stages are brought about
by its genetic and physical interactions with different
regulatorsAfter ensuring spikelet to floret meristem
transition,OsMADS1also suppresses its reversion
to shoot meristem fate @wget al, 2010). Genetic
analysis of three naturally occurring mutants,
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suggesting that the double mutant has completelyAGAMOUS-like 24 (AGL24), and SHORT
changed its reproductive habits from sexual to asexuaVEGERTIVE PHASHSVB controls FM initiation
mode. In their cooperative functions of inhibiting and maintenance (Liet al, 2009; Rutjenst al,
pseudovivipary in riceDsMADS1promotes floret  2009; Jiet al, 2011; Grandiet al, 2012).
meristem specifications wherd€asMADS15nhibits ARGONAUTE1(AGO1) and AGO10 control
SAM formation (Wanget al.,2010). termination of stem cells in FM by regulating two
microRNAs, miR172 and miR165/166, targeting

Further OSMADS15also genetically interacts APETALAZ(AP2) and homeo-domain-Zip IIl (HD-
with OSMADS34/RP2in early developmental stages ZiP Ill) members PHVandPHB), respectively (Jet
and regulates transition from SAM to IM, redundantly al., 2011). In rice, after securing fertile FM initiation
with otherAP1/FULike genesOsMADS14nd18  On aspikelet merister@sMADSIplays key role for
(Kobayashiet al.,2012). IM identity is established the maintenance of FM identity and its eventual
normally in single mutants of these genes but in Strongtermination as a determinate meristem. It activates
MADS14;15;18i/pap2-Iquadruple knockdown the expression of four HD-Zip Ill genes of the
lines, multiple shoots were produced in place of REVOLUTA (REV)/RBV clade OsHB}-OsHB49
primary branches after reproductive transition, in rice, of whichOsHB4is directly regulated by
suggesting that a combined action®f1/FULYike ~ OsMADSI(Khandayet al., 2013). Furthermore, it
genes andOsMADS34are required for IM also regulates expression of other homeoBbi
establishment (Kobayashi al.,2012). Interestingly =~ 9enes and a member ¥ABBY gene family
the presence of functionaDsMADS34in  TONGARI-BOUSHI1 (DB1)/OsWMBBYS5 in

MADS14;15;18triple knockdown plants is sufficient developing rice panicles (Khanday al., 2013).

to ensure IM establishment and floret formation OSYABBYS5regulates maintenance and determinacy
(Kobayashiet al., 2012) but wherOsMADS1is of floret meristem in rice @nakeet al, 2012).Thus,
down-regulated insmads1fss-of-function mutants, ~ all these evidences together suggest@=ADS1
new plantlets bearing features of a juvenile plant aremay be regulating its FM function by regulating
formed in the panicle. These observations supportexpression of multiple meristem regulators from
Goethes hypothesis that florets in grasses are vVarious families in developing florets.

modified juvenile plantlet meant for reproduction and Arabidopsis AGL24ndSVPregulate transition
OsMADS1together withOsMADS15assures a  gnd identity of floral meristem and their expression is
fertile floret development meant for sexual directly repressed bgEP3(Hartmannet al, 2000;
reproduction (Viing et al., 2010). Additionally, \ichaelset al, 2003; Gregi®t al, 2008; Kaufmann
asynergistic interaction betwe@sMADS1and 58 et al, 2009). Rice genome encodes thBaP-like
also represses reverse transition from roret-to-spikeIetgeneS,OSM ADS22, 47and 55 (Lee et al., 2008).
and promotes floret meristen identity (Blial.,2015).  |nterestinglythey do not regulate flowering time but
have conserved functions of regulating meristem
OsMADSL1 Regulates Floral Meristem |dentity identity in rice (Leeet al, 2008).As opposed to the
and its Maintenance regulation of AGL24 and SVP by SEP3in
Arabidopsis, OsMADSActivates expression of two
After establishing the identity to floret meristem, its SVPgenes,OsMADS22and 55 in developing rice
maintenance is another crucial step for successfulpanicles,the activation dsMADS55being direct
completion of reproductive development. This is (Khandayet al.,2013), suggesting that despite the
brought about by maintaining a balance betweenconserved functions of ri@vPgenes is establishing
organogenesis and meristem indeterminadcy  FM identity, the regulatory relationship between
Arabidopsis,a complex genetic network involving OsMADSIandSVPiike genes is diverged (Khanday
transcription factors from homeoboxgene family et al., 2013). The positive regulatory relationship
(WUSCHEL(WUS,SHOOT MERISTEMLESS between OsMADS1 and rice SVP genes
(STM), PHAVOLUTA (PHV), PHABULOSA(PHB) (OsMADS22and55) are functionally supported as
and BEL1-like homeodomaifBLH) proteins) and  all three genes show overlapping phenotypes upon
MADS-box gene familyAGAMOUSAG), over-expression during panicle and spikelet
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development (Prasaet al, 2001; Sentokwet al, development and meristem determinacy @dal.,
2005; Leeet al, 2008). It is important to note that, 2015). ThusOsMADS1also retains the conserved
OsMADS5%ut notOsMADS22displays flowering  function of activation of homeotic genes with a slight
time functions inArabidopsisas its over-expression divergence in rice.

complements early flowering phenotype of

Arabidopsis svpmutants and causes delayed OSMADSI Plays Diverse Roles in Floral Organ
flowering phenotype in wild-typérabidopsis(Lee ! dentity Specification and Organogenesis

et al., 2012). OsMADS]1also interacts with ricé C-  ggpgenes play redundant but major role in floral organ
class geneDsMADS3&nd togetherthey play arole  jjeniity establishment together wABC class genes

in regulating floret meristem activity maintenance as in Arabidopsig(Pelazet al, 2000; 2001: Honma and
floret meristem is terminated prematurelpgmadsi- Goto, 2001; Dittat al.,2004). Howeverin l0ss-of-

z osmads3-dlouble mutants (Het al., 2015). function mutants of ric®sMADSIgene alone, floret
organs are mis-specified to glume-like identity (Jeon
et al.,2000; Prasadt al.,2005;Agrawalet al.,2005;
Chenet al.,2006;Wanget al.,2010). Despite general
In addition to the specification and maintenance of similarity betweerArabidopsis SERjenes and rice
floret meristemOsMADSJalso controls identities of OsMADSIfor their expression patterns and roles in
floret organs a®©®sMADSlloss-of-function results  providing floral organ identities, there exists a partial
in development of defective and malformed floret divergence in their functions. The expression of
organs (Jeoret al, 2000; Prasaet al, 2005; Arabidopsis SERyjenes andDsMADSL1in floral
Agrawalet al, 2005; Cheret al, 2006;Wanget al, meristem is largely conserved but their expression
2010; Khandagt al, 2013). Lemma and inner floret  patterns in the floral organs are diversifis&Pland
organs are homeotically converted to glume-like 2 are expressed in all four floral orgar@P3is
features with lesser effect on paleaOsSMADS1  restricted to only three inner floral organs &tP4
down-regulated lines (Prasatal.,2005). Similarto  is expressed only in floral center with weak
Arabidopsiswhere SEP factors regulate expression expression in sepals (Flanagan and Ma, 1994; Mandel
of and interact withBCD membersOsMADS ot and Yanofsky 1998). On the other hand, rice
only physically interacts (genetically with few of them) OsMADSI1is expressed only in lemma/palea (sepal
with rice ABCD genes (Mooret al.,1999; Lim et equivalent) and weakly in carpel primordia during
al., 2000; Kaufmanret al., 2009; Cuiet al.,2010; floret organogenesis (Prasatdal.,2001).

Huet al.,2015) but also activates expression of floral _ L _
homeotic genes including B-Class ger@sNIADS4 Corroborate_d W'th the distinct expression
and16), C-Class genesOGMADS3&58), D-Class patterns ofArabidopsis SERgenes and rice

genes OsMADS13 and E-Class gene©$MADS? OsMADS1 their regulatory functions and
and8) (Hu et al., 2015) mechanisms are also diverged. While fB8&Pgenes

are functionally redundant iArabidopsis,rice

Interestingly activation of ricdBCD genes by =~ OsMADS1has both, redundant and non-redundant
OsMADSIis not uniform but developmental-stage functions during organogenesis. For example, while
dependeniA comparison of expression levels of rice  OsMADSInon-redundantly controls lemma-specific
homeotic genes between wild-type av&imadsl-z  differentiation program (Prasaat al.,2001; 2005;
across various stages of panicle developmentAgrawalet al.,2005), it regulates identity of marginal
demonstrates thadbsMADS1activates expression tissues during palea differentiation, redundantly with
of meristem function genes such@sMADS6, 17, OsMADS6(Ohmori et al., 2009; Li et al., 2010).
58and organ specification genes lReMADS7and Though, OsMADS1functions cooperatively with
8 at early stage of panicle development whereasOsMADS1%luring FM establishment, their functions
activation of OsMADS4and 16 (B-Class), are opposite during floret organogene€sMADS1
OsMADS3(C-Class) andOsMADS13(D-Class) controls differentiation of lemma, palea marginal
occurs only at the late stage of development, consistentissues (PM3), inner floret agans and determinacy
with their requirement in inner floret organ However OsMADS15is mainly required for

OsMADSL1 Functions for Stage-Dependent
Activation of Flower Homeotic Genes
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specification of palea and empty glumesafWyet
al., 2010). OsMADS1does not express in lodicule

2010) and ectopic over-expression @§MADS1
leads to premature termination of floret meristem

and stamens but their development is affected in(Prasadbt al.,2001).0sMADSImodulates/regulates

osmadslmutants (Prasaeét al., 2001; 2005;
Agrawal et al., 2005; Cheret al., 2006). Its early

multiple genetic pathways to control meristem
determinacyHomeotic genes of Class-O§MADS3

expression in FM or non-cell autonomous signaling and 58) and Class-D @sMADS13 are known to
may account for its role in specification of lodicules redundantly regulate development of reproductive

and stamens. Interestinglignctions ofOSMADS1

organs and floret meristem determinacgfyaguchi

in specifying lodicule and stamen identity are partially et al.,2006; Drenet al.,2007; 201, Li et al.,2011b).

independent oflOsMADS16regulated genetic

Paralogous C-function genes have partially sub-

pathway as evident from the additive phenotypes in functionalized their functions but they redundantly
osmadsl-z spwldbuble mutants, on the other hand, regulate meristem determinacyaffaguchiet al.,

a striking similarity betweeasmadskndosmads7/

2006; Huet al., 2011; Dreniet al., 2011; 2013).

8 phenotypes suggests that they function in OsMADSIactivates expression as well as physically
interdependent manner as regards inner three floreinteracts withOsMADS3and 58 (Hu et al., 2015).

organs (Cuet al.,2010; Huet al.,2015).Furthermore,
a genetic analysis aflsmadsl-z osmadsauble
mutant also demonstrates that balisMADS1and
OsMADS34 are required for specifying rice floret
organ identity (Gacet al., 2010). Furthermore,
osmadsl-z osmads3déuble mutants show that no

Its synergistic interaction witbsMADS58&ontrols
floret meristem determinaggvident from phenotypes
of osmadsl-z osmadsaB®uble mutants where
meristem activity is prolonged in the double mutant
(Hu et al., 2015). On the other hand, rice Class-D
gene OsMADS13egulates ovule identity and floret

inner floret organs are formed, only extra-glume-like meristem determinacy (Lopez-Dekal, 1999; Dreni
structures are developed in the center of the floret,et al, 2007, 201; Li et al, 2011b). The role of

suggesting that a combinatorial actiorOEMADS1
andOsMADS3s required for development of inner
floret organs (Huet al., 2015). OsMADS1lalso
genetically and physically interacts wilsMADS6.
Introducing osmads1mutation in osmads6
background enhances its phenotypes (Mebal.,
1999; Ohmoret al.,2009; Liet al.,2010), while over-
expression 0fOsMADS6results in formation of

additional lodicule-, stamen- and carpel-like organs

(Duanet al.,2012). The expression of anotiA¢sL 6-
like gene,OsMADS17s also directly activated by

OsMADS1,as demonstrated by the binding of

OsMADS1 on a CArG element i®@sMADS17

promoter and the corresponding reduced expressio

of OsMADS17 inosmadsl-#lorets (Huet al,
2015).

OsMADSL Controls Floret Meristem Determinacy
through Multiple Genetic Pathways

OsMADSIn controlling floret meristem determinacy
is partially independent dDsMADS13 as evident
from additive phenotypes seen asmadsl-z
osmads13-8louble mutants (Het al.,2015).

OsMADS1 and OsMADSG6 redundantly
regulate determinacy of floret meristem (Ohrredri
al., 2009; Liet al, 2010). The spikelet meristem
determinacy is severely impaired nimfol-2 Ihs1-2
double mutants as compared to single mutants and
they develop one or more sequential extra spikelet(s)
without inner floret organs (Ohmoet al, 2009).
Consistent with their redundant role in controlling
meristem determinagyhey regulate expression of a
"Lommon genePsMGH3/0OsGH3-8&ncoding an
auxin-responsive gene (Prasddl.,2005; Zhanget
al., 2010). Interestinglydown-regulation 0cOsMGH3
results in an enlarged carpel growth in a fraction of
florets that may be an indication of partial loss of
determinacy (ddavet al., 2011). Interaction of

OsMADS s expressed in the floret meristem center OsMADS6with determinacy regulators like

and florets of loss-of-function mutants foasMADS1

OsMADS3, 5&nd13also play a role in controlling

develop multiple abnormal florets with only lemma/ meristem determinacy

palea like structures, mimicking flower-within-flower
phenotypes (Jeoet al, 2000; Prasaeét al, 2005;
Agrawalet al, 2005; Ohmoret al, 2009; Cuket al,
2010; Gacet al, 2010; Liet al, 2010;Wanget al,

OsMADS1 Regulates a Balance Between Auxin
and Cytokinin Signaling Pathways

Phytohormones, auxin and cytokinin and their
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interactions with transcription factors are known to genes (e.gLOG) and type-B response regulators
regulate floral meristem establishment, organogenesigde.g. OsRR16and OsRR18 may be indirect
and meristem determinacy ArabidopsigSessions  (Khandayet al, 2013). Thus, the roles 6fsMADS1

et al, 1997; Benkovét al, 2003; Leibfriedet al, in regulating expression of key transcription factors
2005; Shaniet al., 2006; Gordoret al., 2009; and controlling a critical balance between auxin and
Chickarmanet al, 2012; Liuet al.,2014). In addition  cytokinin signaling pathways indicate that it is a master
to controlling leaf polarity and gynoecium patterning, regulator of key genetic pathways during rice floret
AUXIN RESPONSEATTOR 3 (ARF3/ETTIN meristem transition, establishment, maintenance, organ
(ETT) together witl AGAMOUSAG) also regulates  differentiation and termination of the meristem.

floral meristem determinacy through repression of the

expression oWWUSCHEL(WUS (Sessionst al,  Evyolutionary Significance of OSMADSL1 and
1997, Chitwoodet al., 2009, Liuet al,2014) Its Future Perspectives

interaction withKANADI4 (KAN4/ATS controls

ovule development (Kellest al.,2012). Onthe other SEP genes are key regulators of reproductive
hand, cytokinin induces expression@Swhichin ~ development programs in higher plants (Malcomber
turn represses expression of type-A cytokinin response2nd Kellogg, 2005; Litt and Krame2010; Rijpkema
regulators, creating a feedback regulatory loop €t al, 2010). During evolution, grass species have
(Leibfried et al, 2005; Gordonet al, 2009). acquired certain novel traits such as higher order
Importance of cytokinin in regulating FM in rice is branching in inflorescence (i.e. panicle) that provided
evident from the phenotypeslofjandckx2mutants, ~ benefit of producing more seeds. Interestinghe
functioning in cytokinin biosynthesis and metabolism, divergence time-scale of grasses (~60 million years
respectively (Ashikarét al, 2005; Kurakawat al, ~ @go) overlaps with the estimated evolutionary
2007).0sMADSositively regulates auxin signaling divergence oOsMADS1sub-clade, indicating that
pathways at multiple levels and represses overallthis sub-clade may have co-evolved with grasses in
cytokinin signaling pathways during rice floret order to acquire grass-specific functions (Doyle, 1973;
development, thus maintaining a critical balance Prasadet al., 2005; Khandayet al., 2013). This
between auxin and cytokinin signaling pathways (Fig. hypothesis is supported by the fact that members of
3; Khandayet al.,2013).OsMADS1Iregulates both  this clade O©sMADS1, &nd34) ensure development
upstream (auxin biosynthesis, homeostasis andof grass-specific traits during entire reproductive
transport) and downstream (auxin response factorsfevelopmentinrice (Ce al.,2010; Gaet al, 2010;
components of auxin signaling pathways (Khanday Kobayashiet al, 2010).An absence 0OsMADS1

et al, 2013). It activates the auxin response by in rice lower florets and its sterility may be correlated,
simultaneously promoting the expression of activation indicating thatOsMADSis required to make fertile
domain containindRFs (e.g. OSARF9, OSARF12, florets. This is corroborated with the phenotypes of
OsARF16, and OsARF25) and repressing expressioHtS over-expression in sterile lower florets where it is
of the ARFs Containing repression domains (eg sufficient to initiate ﬂoret'speCiﬁC developmental
OsARF18) (Khandayet al., 2013). It directly ~ Programs (Prasaet al, 2001).

modulates expression of regulators of polar auxin

. In addition to species specific functions of
transport OsARF-GARINdOsPINJ and proteolytic P P

d dation-ind derARFs (OSETTIN OsMADSL1jt also interacts with several conserved
I?hgrad atlonl-lréoigen € s ©Os 3 factors and executes its tissue- and organ-specific
(Khandayet al, )- regulatory role with them. This could be brought about

In contrast to auxin signaling pathway by forming higher order complexes, the cumulative
OsMADS1represses overall cytokinin signaling effects of which define its regulatory functions.
pathway during panicle development as the cytokinin Identifying such tissue- and stage-specific higher order
levels and/or response was enhance@sMADS1  complexes would further enhance our understanding
down-regulated panicles (Khandetyal, 2013). The ~ ©n specific roles 0©sMADS1during development
repression of type-A Cytokinin response regu|ators of fertile and determinate florets in rice. Other
(e.g. OsRR1 OsRR4and OsRR9 by OsMADS1is interesting gap in our understanding is to delineate
direct whereas regulation of cytokinin biosynthetic the role oOsMADSIin regulating the differentiation
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of lodicules and stamens where it is not expressed. I{Acknowledgements
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