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Abstract 

 

 Climate change will increase the vulnerability of agricultural production systems, 

unless scientists and farmers reorient their present approaches toward making them climate 

smart or climate resilient. The integration of recent developments in big data analytics and 

climate change science with agriculture can greatly accelerate agricultural research and 

innovation for climate smart agriculture (CSA).  CSA refers to an integrated set of 

technologies and practices that simultaneously improve farm productivity and incomes, 

increase adaptive capacity to climate change effects, and reduce green house gas emissions 

from farming. It is a multi-stage, multi-objective, data-driven, and knowledge based approach 

to agriculture, with the farm as the most fundamental unit for both strategic and tactical 

decisions. This paper explores how big data analytics can accelerate research and innovation 

for CSA. Three levels at which big data can enhance farmer field level insights and 

actionable knowledge for the practice of CSA are identified: (i) developing a predictive 

capability to factor climate change effects to scales relevant to farming practice, (ii) speeding 

up plant breeding for higher productivity and climate resilience, and (iii) delivery of 

customized and prescriptive real-time farm knowledge for higher productivity, climate 

change adaptation and mitigation. The state-of-art on big data based approaches at each of the 

three levels is assessed. The paper also identifies the research and institutional challenges, 

and the way forward for leveraging big data in research and innovation aimed at climate 

smart agriculture in India. 
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Climate Smart Agriculture with Big Data - Review of Current Status and Implications 

for Agricultural Research and Innovation in India 

1. Introduction 

 Climate change intensifies the challenge of future food security (Campbell et al., 

2016). Rising average temperatures, more variable rainfall and increasing frequency of 

extreme events, resulting from anthropogenic climate change (Fischer and Knutti, 2015) will 

increase vulnerability of agricultural production systems, unless scientists, farmers and 

agribusiness reorient their present approaches to make them climate smart or climate resilient 

(World Bank, 2015). Agriculture also accounts for 19 to 29 percent of total greenhouse gas 

(GHG) emissions that contribute to climate change, and the largest share of non-CO2 GHGs. 

The Paris Agreement of 2015 mandates nations to take urgent action to reduce GHG 

emissions to limit global warming below 2
0
C (UNFCC, 2015).Climate smart agriculture 

(CSA) is an important part of the solution to  climate change problem, and is necessarily the 

future way of agriculture.  

 Emerging big data technologies promise new levels of scientific discovery and 

innovative solutions to complex problems (National Science and Technology Council, 2016). 

They can be leveraged to address complex problems of addressing climate change and its 

impacts on agriculture (Faghmous and Kumar, 2014; World Bank, 2016).The transformative 

potential of combining big data from crop genomics, phenomics, climate, remote sensing, and 

individual farms for generating scientific, economic, social and environmental value in 

agriculture is underscored by Monsanto’s recent (2013) acquisitions of Climate Corporation, 

Precision Planting, and several other data resource and analytics companies; similar 

acquisitions and partnerships among agribusiness multinationals; and emerging start-ups in  

agriculture that leverage data analytics (Gilpin, 2014; Bomgardner, 2016).The Digital India 

initiative has also made India a fertile ground for diverse groups of scientists, students, 

analysts, businesses, and entrepreneurs  to leverage big data for farmer and business value. 

Indian agriculture start-ups attracted over  US $500 million investment in 2015, the third 

largest globally (after US and Israel), the second largest (after US) in the number of  start-up 

ventures financed, and the largest globally in drones, irrigation technologies and data driven 

agricultural decision support systems (AgFunder, 2016). 

 The purpose of this paper is to assess the state-of-art on how big data tools and 

methods can be leveraged to integrate climate, crop and agricultural informatics with design 

and management of agricultural systems at farm level for climate smart agriculture. The 

potential opportunities, challenges, and the way forward for research and innovation aimed at 

climate smart agriculture  in India are identified.  The paper is structured as follows: 

1. Big data - a perspective on  technologies and potential in agriculture 

2. Big data and climate smart  agriculture, and 

3. Roadmap for leveraging big data for climate smart agriculture in  India 

 

2. Big data - a perspective on technologies and potential in agriculture 

 Big data  broadly refers to  large, diverse, complex, longitudinal or distributed 

datasets generated from a variety of sources (instruments, sensors, internet transactions, 

email, video, click streams, and/or all other digital sources) available today and in the future 

(National Science Foundation, 2012). Traditional data analysis can also involve many 

observations, but it includes only a few variables to explain a phenomena. Big data changes 

this paradigm by recognizing that when data and data sources are large and diverse, they hold 

a lot of detail that can explain complex phenomena (Halevy et al., 2009). The value of data 

increases manifold if it can be linked and integrated with other data, irrespective of their 

source or form. The promise of new levels of knowledge discovery and economic value has 

made big data analytics one of the key tools of the 21st century.  By 2030, big data is 
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expected to provide the foundation for a global second economy which can potentially 

exceed the size of  first economy (Arthur, 2011). 

 Big data analytics is essentially an outcome of developments across three major 

components of the digital revolution (Kuneet al., 2016): (i) new digital data sources, (ii) more 

computing power (faster processers and networks, massive storage, parallel processing, cloud 

computing), and (iii) higher level analytics (machine learning, deep learning, natural 

language processing, visualization). Together, they enable creation of novel value by 

leveraging massive, structured, and unstructured data to generate powerful insights into 

complex phenomena.(Unstructured data does not conform to a pre-defined schema and 

cannot be easily searched or processed in traditional database systems). Sensors, search 

engines and social media are examples of sources of unstructured data (text, documents, 

images, videos, etc.). That only 5% of all data in the world is structured data (Gandomi and 

Haider, 2015), underscores the wide scope and significance of big data technologies. 

 Large volume, variety, and velocity are three basic characteristics of big data. Volume 

refers to size of data, while variety encompasses multiple data sources, variables, formats and 

heterogeneity (structured/unstructured data).  Velocity refers to the frequency at which data is 

acquired, which can vary from seconds to years. Data veracity (uncertainty), variability 

(inconsistency) and value are also often included as additional characteristics of big data. 

Such data are too large to be stored or processed on a single computer using traditional 

software and database architectures (tables, excel sheets, SQL databases). While the 

size/volume of big data gets popular attention, the heterogeneity of sources, formats and lack 

of structure present its most difficult challenges (Davenport, 2013). The key idea of big data 

therefore also includes novel methods used for data integration, storage, processing, 

visualization, and analyses. A definition which covers all these aspects is:  Big Data is data of 

such large size and complexity (large number of variables and diversity of their sources, 

structures, frequencies, and scales), that they require new computer and data architectures, 

techniques, algorithms, and analytics to manage and extract value and hidden knowledge 

(adapted from Schönberger and Cukier, 2013). 

 Creating value from big data involves five distinct steps: (i) data acquisition and 

storage, (ii) information extraction and cleaning, (iii) data integration, (iv) modeling and 

analysis, and (v) interpretation and deployment (Jagdish, 2015). Specific big data 

technologies analyze textual, video and audio data and link them to other data. Similarly, to 

deal with high volume, variety and velocity aspects of big data, machine learning 

technologies are used to rapidly fit, optimize and predict data. Further, as big data are too 

large to store in any single central data base, technologies for parallel storage and processing 

among several computers are deployed for faster and more balanced output. Finally, the 

visualization tools of big data enable users to interact with underlying algorithms, assess and 

interpret outcomes of analysis, and communicate with stakeholders. 

 Hadoop, an open source software built in java programming language, is the most 

widely used big data technology for distribution of data and sub-problems for parallel storage 

and processing (Davenport, 2015). It is a highly scalable, integrated environment for 

dividing, storing and processing both structured and unstructured data across multiple 

processors (nodes). Several versions of Hadoop are available from different vendors. Another 

commonly used tool is MapReduce, a programming model developed by Google for reliable, 

scalable and distributed computing across a group of linked computer nodes or processors. A 

recent version of the Hadoop-MapReduce framework (Apache Hadoop Release 3.0, 

December 2017) can be downloaded from http://hadoop.apache.org/releases.html. 

 Hadoop's java based file system (Hadoop File System or HDFS) stores both 

structured and unstructured data in small replicated blocks of uniform size (default 64MB). 

HDFS manages large data by splitting and storing data from each file in multiple files 
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distributed across blocks at multiple nodes. The file system uses a tree structure to store and 

identify data in two types of nodes, Namenode and Datanode. For each source of big data, 

Namenode identifies the source file name and its metadata. The data are stored in Datanodes, 

in blocks of distributed clusters of uniform storage capacity, and linked to their corresponding 

Namenode. This permits identifying, structuring, storing, querying, and processing the split 

data from each node independently. Hadoop's client interface enables reading and writing 

data to different files. MapReduce provides the tools for parallel processing of data in HDFS. 

Processing can occur with data stored either in HDFS (for unstructured data) or in a database 

(for structured data). The advantage is that MapReduce can process data at the node where 

the data file is located without transmitting it to an independent processor.  

 The Hadoop ecosystem has evolved in recent years to a platform that includes many 

different tools in addition to MapReduce. These include Mahout (a scalable machine learning 

and data mining library), Pig (a high-level data-flow language and execution framework for 

parallel computation), Spark (fast and general programming models for Hadoop data 

querying and processing applications and visualizations), and security and data management 

tools. Other programming languages, database systems and hardware architectures are also 

being added. Recent trends point to hybrid architectures that integrate Hadoop, databases, 

cloud sources (Assuncaoet al. 2015), electrical and optical networks (Rehman and Esmailpur, 

2016), massive parallel processing technologies, and incorporate both established database 

and new approaches into a common platform. A typical schematic of big data storage and 

processing environment is shown in Fig 1. Many softwares in Hadoop platform are open 

source, but they require high degree of computer programming and analytics skills. 

 A key difference between big data and traditional data analysis is that the latter is 

hypothesis driven while big data analytics relies on machine learning to arrive at best fit 

models. The central feature of machine learning is its essentially 'theory-free' or hypothesis 

free' approach with focus on learning from data. This can result in challenges of 

interpretation, spurious correlations, and model fits.  

 Businesses were among the first to gain from the theory free approach of big data to 

predict consumer preferences from buying data, leading to new marketing strategies and 

higher profits (Davenport, 2013). But this should not be equated with improved scientific 

understanding of buyer behaviour, as marginal increases in targeted offers to consumers can 

translate to significantly higher profits. Other situations may not provide similar value with 

the theory free approach. A classic example of limitations of theory-free big data analytics 

(machine learning) is the Google Flu Trends (GFT) Model to track and predict flu outbreaks 

in USA (Ginsberg et al., 2009), and its later inadequacies (Butler, 2013). GFT estimated 

weekly influenza activity with a one day reporting lag, much shorter than US Centre for 

Disease Control's two week lag. But the theory-free big data analysis proved fragile as its 

success provoked internet searches by people who were healthy, leading to bias in data. From 

2015, Google stopped publishing flu trend data and passed them to specialized organizations. 

 What the GFT model highlights despite its inadequacies is that machine learning can 

provide useful insights for domain practitioners to ask and resolve high level questions that 

might not otherwise be asked. Complementary domain knowledge can add significant value 

to machine learning outputs by providing better insights into identifying and testing more 

meaningful hypotheses for causal inferences (Maciejewskiet al., 2016; Dhar, 2013; Shriffin, 

2016). This difference from essentially data driven business analytics is most critical for 

applications of big data analytics in scientific knowledge discovery domains such as 

agriculture.  

 Perhaps no other area is so alluring for big data-based innovations than agriculture 

(Wolfertet al., 2017; Jackson, 2016; Mckinsey& Company, 2016; Gilpin, 2014; Sonka, 

2016). Big data in agriculture comes from big data of crop genomics and phenomics, and lots 
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of small data arising from wide spatial and temporal variations in climate, crops, farmers, 

land, soil, water,  infrastructure, markets, socio-economic conditions, GHG emissions, 

environmental and climate impacts, etc. Increasingly, weather and remote sensing satellites, 

climate models and forecasts, and more recently micro satellites, drones and field sensors, 

have added to the volume, velocity and variety of agricultural data. Farmers too have 

demonstrated their capacities to engage with data driven information and advisories delivered 

on mobiles (Glendenning and Ficarelli, 2012). Their responses also constitute new data that 

augment agricultural big data. National initiatives like Digital India, which extends the digital 

network to 250000 village Panchayats, are expected to provide customized agricultural 

knowledge services to individual farmers. The Digital India Network is also a source of 

distributed big data that can be leveraged for tailored knowledge services to farmers, 

businesses, government and communities. But, for these initiatives to generate sustainable 

value, strengthening the interface between big data and domain, knowledge of CSA will be 

necessary. 

 

3. Big Data and Climate Smart Agriculture 

 As agriculture constantly seeks new products, practices and technologies to enhance 

food security, and farmer and consumer welfare, the productive capacity of its natural 

resources base is shrinking. Climate change compounds the exigencies of food security and 

natural resource sustainability by exposing farming to greater uncertainties and risks of 

extreme events (WMO, 2010, Campbell et al., 2016).Agriculture also contributes to climate 

change with the major share (37%) of N2O and CH4 emissions (Paustian, 2016). Improved 

soil and crop management can substantially reduce emissions and restrict global temperature 

increases.  

 The multi-dimensional aspects of agricultural production under climate change are 

captured in FAO's definition of climate smart agriculture (CSA)as: "agriculture that 

sustainably increases productivity, resilience (adaptation), reduces/removes GHGs 

(mitigation), and enhances achievement of national food security and development 

goals.”(FAO 2010). By this definition, CSA has three concurrent objectives: (i) sustainably 

increasing farm productivity and income, (ii) increasing adaptive capacity to climate change, 

and (iii) reducing GHG emissions. The fundamental land unit for operationalizing CSA is 

necessarily the farm.CSA is about proactively and precisely responding to more variable and 

extreme conditions under climate change by integrating strategies to improve crop planning, 

adaptation and agronomic management on the farm. Geographic and temporal specificity of 

information on climate change effects, risks, agronomic practices, and impacts at farm level 

is therefore critical for implementing CSA. 

 A number of strategies and farm technologies have emerged for practice of CSA 

(Rosenstocket al., 2016). These include breeding crops for resilience to stresses induced by 

climate change, shifting crop production to new seasons/regions, insurance against risks, and 

crop, soil and water technologies and practices to improve productivity, input efficiencies, 

carbon sequestration, and reduction of GHG emissions (ICF International, 2016). These 

responses present their own challenges. Plant breeding takes time and is limited by genetic 

variation within or across crops and environments. Generation of technologies for soil, water 

and crop management by traditional field experimentation in research station plots across 

multiple environments is also cumbersome and time consuming. The experiments and 

analysis focused on interaction between crop and macro-environment, have generally 

excluded farmers and management practices on their fields as variables. As a result, advice 

on implementation of CSA technologies and practices is generic, arbitrary, inconsistent, 

imprecise, slow, and lacking in scale and sustainability. The primary reason for this is lack of 

geographic and temporal specificity of climate change data and process-driven actionable 
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knowledge required for CSA. Similarly, market adaptive systems for climate change like 

agricultural insurance can be effective only if expected risks at farm level can be assessed 

with greater spatial specificity. 

 Big data's capacity for inclusion of heterogeneity - across farms, farmers, climates, 

crops, soils, natural resources, models, management strategies and outcomes, post production 

value chain systems, and other economic variables of interest -  can boost geographic 

specificity, timeliness and scalability of actionable knowledge for CSA. This amalgamation 

of agriculture and big data is being seen as potentially the greatest accelerator of food 

production technology since the Green Revolution (World Economic Forum, 2016; 

Bomgardner, 2016).  

 For  big data analytics to enhance research and innovation for strategic and tactical 

decision-making with the geographic specificity needed for CSA, it needs to be applied and 

integrated across three levels: (i) developing a predictive capability to factor climate change 

effects to resolutions compatible with farm planning, practice, and risk assessment, (ii) 

speeding up and improving precision of plant breeding for climate resilience, and  (iii) 

providing farm level customized knowledge support for better crop planning, higher 

productivities, climate change adaptation and GHG reduction. The state-of-art of big data 

analytics at these three levels is reviewed. 

 

(i) Developing predictive capability to factor climate change effects to farm level: To 

support both strategic and tactical decisions for CSA, apriori assessments of climate change 

at farming scale precision are required at two levels: (i) projections, and (ii) predictions. 

Projections address the long-term (30, 50, 100 years) and provide information on intra-

seasonal risks of extreme events under climate change (extreme events are events with a 

probability of occurrence of a climate variable above (or below) a threshold value near the 

upper (or lower) ends of the range of the observed values of the variable - IPCC 2012). 

Projections are valuable for strategic planning for CSA, eg. for germplasm screening, setting 

plant breeding goals, crop planning, designing water systems, etc. Climate predictions focus 

on short-range climate predictability (hourly, daily, weekly) under climate change to support 

climate smart agronomic management and operations on the farm.  

 Global climate models (GCMs) project future long term average changes and 

extremes of  temperature, precipitation, and other variables for standard future GHG 

emissions scenarios characterized by IPCC as Representative Concentration Pathways (RCPs  

2.6, 4.5 and 8.5) . The models discretize the earth’s surface into thousands of grid cells at 

resolutions of 60 to 300 km (typical IPCC's CMIP5 set of GCMs are ~ 100 x 100 km). The 

coarse spatial resolution of GCMs does not allow calculating the climate variables at farming 

compatible spatial resolutions. Also, traditional agricultural research spans two to five year 

time horizons. But, CSA alters the time horizon to next 30-40 years or more, to factor in 

relationships between global change and local climate change, and risks of extremes (higher 

intensity and frequency of extreme events like heat shocks, high rainfall events, droughts, 

floods, etc.).CSA therefore challenges both GCMs and traditional agricultural research. 

 Currently available GCMs predict quite well the large-scale climate features such as 

circulation patterns, El Niño Southern Oscillation (ENSO), global mean temperature, and 

precipitation (to lesser extent than temperature).Statistical downscaling methods or regional 

climate models (RCMs) are used to merge information from GCMs with regional and local 

meteorological records and local geography to transform coarse-scale GCM simulations to 

climate information for smaller spatial units (Benestad, 2016). Downscaling assumes a 

systematic link between conditions taking place on a global scale and local conditions. The 

end result is a more spatially detailed picture of what future climate change could mean at 

local levels. The management and manipulation of dozens of climate models and their daily 
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outputs for 50-100 years, and of long term data from multiple sources for downscaling, is 

clearly a big data problem. 

 Downscaling global models to national/sub-continental scales and 50/25 km grids has 

been common in the past two decades, with   projections up to years 2050-2100 for different 

emissions scenarios (Benestad,2016; Girvetzet al.,2013). Further, at these scales , machine 

learning algorithms like Support Vector Machine (SVM), Random Forest (RF), Artificial 

Neural Networks (ANN) or their hybrids have also been shown to be superior to traditional 

regression based climate downscaling (Tripathi et al,, 2006; Goly, 2014, Anandhi et al., 

2008).Downscaling climate to higher resolutions (1km) and hyperlocal resolutions (farm, 

watershed) for agricultural or hydrologic applications has proved more challenging (Fig 2). 

Most attempts have involved downscaling from GCMs/RCMs by interpolation (egWorldClim 

1km resolution climate surfaces for current and projected climate to 

2070,http://www.worldclim. org/version1). The advent of big data with its  tools of machine 

learning and deep learning have increased the predictive capacity of climate models at hyper 

local resolutions by systematically exploring the links between GCM/RCM outputs and high 

resolution local data (Vandal et al., 2017a, b;  Ford et al., 2016; Bell et al., 2016;  Thrasher et 

al., 2013).  

 Examples of big data based  downscaling of climate data to finer resolutions include: 

(i) the NASA Earth Exchange (NEX) which provides downscaled CMIP5 climate models 

projections at 30 arc-second (~ 800m) resolution and daily time intervals for distribution 

through its portal (https://portal.nccs.nasa.gov/portal home/published/NEX.html; Thrasher et 

al. 2013); (ii) The Climate Corporation's seamless integration and extraction of public data 

from climate models, soil surveys, weather stations,  weather  radar,  10m x 10m soil maps, 

crop models, and farm maps on Google Earth  to generate hyper-local weather forecasts for 

agricultural insurance and  agri-advisory services field by field to US farmers (Bell et al. 

2016), and (iii) IBM's Deep Thunder which incorporates a variety of inputs from satellites; 

climate model ensembles, terrestrial data (topography, soils, land use, vegetation, and water 

temperature) gathered by sensors aboard NASA spacecraft, U.S. Geological Survey and 

many private weather stations, to forecast the weather every 10 minutes, for each 1.5 square 

kilometer of farmland (Knowledge@Wharton, 2014). However, work in India on climate 

downscaling (Chaturvedi et al., 2012) has largely been limited to 25/50km resolution outputs 

from IMD's RCMs for climate change projections at these scales for the future emissions 

described  by IPCC's scenarios, including the more recent emission pathways (RCPs). 

 The state-of-art in big data climate analytics is that downscaled information at finer 

resolutions relevant to CSA can be derived from GCMs and local data, and accessed by 

practitioners from private and public providers (Wang et al., 2016; 

https://nex.nasa.govhttps://nex;http://www.climsystems.com). The data can be in different 

forms (maps, time series, summaries etc.) and downloaded through web services and to GIS 

platforms. For the practice of CSA, a critical concern is evaluating and authenticating the 

various datasets for their applicability at local conditions before using them. A central 

question for CSA is also that of assessing uncertainty and risk from downscaled projections. 

Current practice is to use ensembles of climate projections with the algorithms (Ekstromet al., 

2015) to enlarge the scope and range of data by including different sources of uncertainty (in 

emissions data, models, scenarios, downscaling methods). The challenge for CSA is to 

leverage finer resolution climate projections to generate better insights into plant breeding for 

better precision in choice of climate resilient crops/varieties, and for more efficient, effective 

and risk averse farm operations.  

(ii) Speeding up and improving precision of plant breeding for climate resilience: Plant 

breeding provides the primary genetic resources for farm scale climate stress resilience. But, 

conventional plant breeding cycles are long (5-20 years), designed for average macro-
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environment conditions, and limited by existing gene pools. This limits the capacity to 

respond urgently and precisely to rapidly variable conditions and extremes under climate 

change. Even transgenic and molecular breeding approaches are relatively slow and uncertain 

as they depend on random integration of new gene sequences into plant genomes. The former 

are further slowed by regulatory systems for GMOs. Further, plant breeding target genes for 

CSA are most likely to be tolerance to abiotic stresses and general productivity, adaptation 

and mitigation improvements (increasing photosynthesis, altering flowering times and root 

systems; increasing nutrient uptake from applied fertilizers, etc.). These are multigenic traits, 

and thus difficult and slow with conventional breeding. Combining big data from genomics, 

phenomics, and climate models with new genetic engineering tools can potentially speed up 

and improve geographic specificity and precision of plant breeding. 

 The exponential increase in genome and expressed sequence data of thousands of 

varieties of agriculturally important crops in the past two decades (Koleet al. 2016; Edwards 

et al. 2016; Varshney, 2016) has made genomics a big data science (Stephens et al. 2015). A 

similar explosion in high throughput plant phenotyping (HTPP) data for a wide range of 

crops and environments is occurring as a result of advances in automated sensing and 

imaging technologies. Storing and analyzing large genomic, HTPP and environmental data 

for more efficient dissection of genes corresponding to various biotic and abiotic stress-

related adaptive traits in different environments is a big data problem. Big data tools of 

machine learning can more effectively analyze HTPP (Navarro et al., 2016) and genomics 

data (Singh et al. 2016). Integrated analysis of phenomics and genomics data with machine 

learning tools can help plant breeders analyze much larger number of attributes, identify 

novel candidate genes, automate phenotypic ratings and generally improve the genomic 

prediction accuracy (Zhang et al., 2017).  
 Simultaneous advances in new molecular biology techniques like genome editing, 

permit faster, more controlled and precise integration of new genes than the earlier plant 

breeding and transformation methods (Scheben and Edwards, 2017; Altpeteret al., 2016). A 

key technical advance in genome editing is the CRISPR tool which has vastly enabled rapid 

innovation in DNA modification by improving precision, increasing reliability, shortening 

time and reducing costs. A major advantage of CRISPR is, though genetic information of the 

cutting protein is foreign DNA, it can be completely removed after modification of the 

genome. Seamless integration of big data genomics, phenomics and climate analytics can 

accelerate precise identification of regions on crop genomes responsible for variations in 

phenotypic traits, and narrowing down to promising candidate genes for trait introgression by 

genome editing (Blake et al., 2016). Since 2013, a range of new features have been produced 

in crop plants (soybean, mustard, wheat, millet, corn, rice, tomatoes, etc.) through genome 

editing that would have been difficult and time consuming to achieve with conventional 

breeding or existing plant transformation methods. The regulatory aspects of genome edited 

crops are still uncertain, but broad support appears possible because the end product does not 

contain foreign DNA (Jones, 2015). Some genome edited crops have been exempted from 

GMO regulatory procedures in USA and Canada, so long as no pest sequences are included 

in the genome. China, Europe and other countries are likely to follow suit on a case by case 

basis (Sprinket al., 2016).  

 The state-of-art in big data driven plant breeding is the convergence of big data of 

climate, genomics and phenomics, on a single platform that interfaces with genome editing 

technologies. The scope to capture value through in silico modelling for speedier trait 

identification, and for accelerated breeding by genome editing has led to rapid proliferation of 

technology platforms by various startups (IP Pragmatics, 2016). Examples include Caribou 

BioSciences, Cibus, KeyGene, Precision Biosciences, Calyxt, etc. Agri-multinational 

companies (Bayer Crop Science, BASF, Dow Chemical, DuPont, Monsanto, and Syngenta) 

Acc
ep

ted
 V

ers
ion



9 

 

are increasingly leveraging strategic alliances with the start-ups to license gene editing 

technologies and big data algorithms for novel germplasm development. The market for such 

platform based genome editing is growing at over 30% annually and is expected to reach US$ 

315 million by 2020.The public sector has generally lagged the private sector in this 

innovation cycle. One significant public initiative is the collaborative GOBII (Genomic 

Open-source Breeding Informatics Initiative) project at Cornell University with focus on five 

staple crops – wheat, rice, maize, sorghum and chickpea 

(http://cbsuss05.tc.cornell.edu/gobii/). 

 

(iii) Providing farm decision support for CSA through customized knowledge delivery: On 

farm, the main source of variation in crop productivity for a given variety is the weather. In 

addition, crop performance varies with spatially variable soils, inputs, and farming practices. 

In general, farmers rely on prior experience and expert advice for decisions on varieties to 

plant, planting dates, and managing field operations. Their sources of advice range from other 

farmers to public agricultural extension services, NGOs, agribusinesses, and input retailers. 

They pay significant attention to weather based agro-advisories, and some may seek periodic 

online interactive support from experts. However, much of the advice they receive is of 

generic nature, applicable to the broad macro environment than to their specific farms. 

Further, the advice is exclusively focussed on productivity and profitability. The two other 

key objectives of CSA, adaptation and GHG reduction are not included. A few recent studies 

have addressed all the three objectives of CSA but at relatively large spatial units of districts 

as the basic land units to prioritize among a suite of generic CSA technologies (Shirsath et al., 

2017). 

 The practice of CSA requires farm specific knowledge on local climate conditions and 

risks and detailed knowledge of other conditions at farm level. This implies that each farm 

needs to be characterized with respect to climate uncertainties and risks, resources, and 

technologies and practices, to enable CSA decisions. The primary decision is the choice of 

climate resilient crop variety. Based on this, decisions subsequent decisions can be made on 

planting dates for climate adaptation, land management for increasing carbon sequestration, 

and technologies and practices for improving water and fertilizer use efficiencies to reduce 

methane and nitrous oxide emissions. The state-of-art of climate big data analytics allows 

crunching down climate uncertainties and risks in current and changed climate to the farm 

scale (section (i) above). Similarly, the state of art of big data genomics-phenomics permits 

breeding and identifying crop varieties resilient to climate risks expected on the farm (section 

(ii) above). Increasingly, remote sensing data at high spectral and ground resolutions (1-5 m), 

and other data sources like crowd sourcing and mobile sourcing, are becoming available to 

characterize and monitor farm soil and crop conditions regularly. These data, when used with 

crop models can generate farm/er-specific knowledge support for evaluating and 

recommending decisions on input use, soil and water management and crop management for 

CSA. 

 The state-of-art in farm-level characterization and decision tools for CSA is evolving 

rapidly along with innovations in computer power, software, remote sensing, mobile 

technologies, crop models, data analytics and technologies for site-specific management. 

These developments when used with insights from big data analytics on weather, soils and 

crop performance can support farmers make data-based operational decisions that will 

optimize yield, boost revenue and minimize costs and chances of crop failure (Rosenzweig et 

al., 2013; Capalboet al., 2017, Antleet al., 2017). 

 Monsanto and Climate Corporation have demonstrated the feasibility of field-specific 

customization of advice by integrating big data based climate predictions, genomics and 

phenomics for plant breeding, and farm production management models into a viable 
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business model (Bell et al. 2016). The model is built on a big data climate-soil-crop 

genomics-phenomics platform that provides field wise (one acre) priced, prescriptive advice 

on selection of crop hybrids, nitrogen management, and risk cover to farmers in over 15 

million acres in USA.  In another example, IBM, University of Georgia, NOAA and local 

agencies are experimenting with IBM's Deep Thunder super-computing technology to make 

more specific and accurate weather forecasts by 1 sq km grids for individual farmers in the 

drought-prone southwest Georgia, USA. Their approach breaks down atmospheric 

information and real-time weather forecasts into 10-minute chunks about 72 hours ahead, and 

determines precipitation amounts, intensity and soil infiltration for each grid cell at 10 min 

intervals. The resulting site-specific data is transmitted to farmers’ desktops, laptops, tablets, 

or smartphones, which enables them to decide onfarm operations. The partnership also 

integrates soil-moisture sensor networks, variable-rate irrigation systems, and more precise 

weather data to better conserve water and other resources to lower water usage by as much as 

15 percent. A third example is of Coca Cola's fresh orange juice. The product is based on use 

of big data of weather, crop yields, satellite images, regional consumer preferences, and 

detailed product quality data on 600 different flavors that make up an orange, and many other 

variables. Machine learning algorithms decide harvesting schedules and blending of juice 

from oranges from various sources, to maintain a consistent taste all year round, despite 

differences in seasons and practices on individual farms (Ransbotham, 2015). The 

developments in data technologies have also led to many spin-off technology startups for 

farm decision support (AgFunder, 2015) from public  research institutions (NASA  - Planet 

Labs, www.planet.com;  Los Alamos National labs - Descartes Labs, 

www.descarteslabs.com) and technology companies (Google - Climate Corporation). The 

start-ups monitor individual farms with high resolution micro-satellite and other sources at 

high frequencies and leverage other high resolution farm data with big data tools to support 

on-farm decisions. 

 However, reducing GHG emissions from farm soils has received little attention, 

though it is a core objective of CSA. Agricultural soils contribute 37% of global agricultural 

GHG emissions, mainly as N2O from nitrogen fertilizers and CH4 from rice fields (Paustian 

etal 2016).  N2O fluxes are directly related to N input management and, on average, about 1% 

of the N applied to cropland is directly emitted as N2O(basis for estimating N2O emissions in 

IPCC GCMs). However, this value is too high for under-fertilized crops and too low for 

liberally fertilized crops (Shcherbak et al., 2014).Unlike carbon, N2O has no terrestrial sink. 

Reducing emissions by managing soil microenvironment is the only mechanism for reducing 

N2O emissions. Soil additives and fertilizer coatings that inhibit or slow nitrification and 

tillage and water management practices can reduce N2O emissions (ICF International,2016). 

The potential for GHG mitigation by on-farm soil and water management is large, but the 

distribution and diverse nature of soils and production systems (rainfed, irrigated, etc.) 

present challenges in accurately assessing and reducing emissions on individual farms. 

Similar is the case with methane emissions from agricultural soils (largely rice fields). Key 

determinants of soil CH4 fluxes include aeration, substrate availability, temperature and N 

inputs, all of which vary spatially and temporally. 

 Models of N cycling have been integrated into crop models to predict soil emissions 

and reduce uncertainties. The Agricultural Model Intercomparison and Improvement Project 

(AgMIP) has created an ensemble of global crop models and climate change assessments to 

evaluate strategies and provide farm level decision support to concurrently improve crop 

productivities, on, climate change adaptation and reduction of GHG emissions (Rosenzweig 

et al., 2013). Emissions data is also available from satellites (Hardwick and Graven, 2016), 

and ground measurement networks. The measured data when combined with high resolution 

climate, soils, remote sensing data and model outputs constitutes soils big data. Integrating 
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high resolution climate, genomics crop, soils and other farm data with crop models in a 

unified framework can lead to farm specific advisories that can meet all the three core 

objectives of CSA. A framework for such integration is presented in Fig 3. 

 

4. Roadmap for leveraging big data for climate smart agriculture in India 

 In summary, a big data analytics based portfolio of scientific and analytical tools for 

strategic and tactical decision support on individual farms  has evolved over the past decade 

to operationalize and scale CSA. Initially the evolution happened independently across the 

domains of climate change, genomics/phenomics, and farm decision support systems, with 

the GCMs providing the primary climate change signal information. Later, with increasing 

capacity for hyper resolution climate and farm information, the portfolio of data and tools 

began to be integrated into implementable frame works on single platforms to characterize 

and manage every farm from a CSA perspective. The framework allows: (i) characterizing 

each farm by expected climate change uncertainties and extremes, and resources; (ii) 

enabling choice of resilient crops and varieties for the farm; (ii) applying farm level decision 

support tools in real time to optimize productivities, incomes, climate resilience, and reduce 

GHG emissions. 

 The basic input to the agri-big data platforms are the coarse resolution, but validated, 

and freely shared public domain GCM/RCM data, climate data bases, natural resources data, 

and genomic databases. Without free access to this data, leveraging big data analytics to 

crunch information to precise data, decisions and outcomes for individual fields would not be 

possible. In India, public domain digital data sources include (i) IMD for coarse resolution (1
0
 

x 1
0
; 05

0
 x 0.5

0
; 0.25

0
 x 0.25

0
) climate data, (ii) 250m resolution soil data from National 

Bureau of Soil Survey and Land Use Planning; and high resolution 1m to 250m land use data 

from National Remote Sensing Centre. In addition, there are several international public 

domain climate data sources from which data for India can be extracted. These include 

historical data and climate projections to 2100 from IPCC-CMIP5; soils data from FAO, and 

remote sensing satellite data spanning a range of spatial resolutions (1m to several 100s of  

Km) from a variety of sources on land use, vegetation conditions, soils (including soil 

moisture), and water resources.  

 On the other hand, the local data and big data analytics algorithms that enable data 

crunching to farm scales are generally proprietary, and are fast becoming increasing sources 

of new intellectual property (IP) in agriculture. This has motivated a number of new business 

models based on big data technology platforms that host massive national and global 

databases from multiple sources, and tools to derive knowledge products and insights that 

support farm level strategic and tactical decisions. These developments are rapidly making 

site specific digital agriculture the foundation for CSA. 

 As weather becomes increasingly volatile with climate change, the mobile or smart 

phone becomes the farmer's most crucial tool for CSA. Knowledge delivery through mobiles 

brings to small holder farming the same advantages as large scale mechanized precision 

farming on large farms. The public infrastructure to deliver precise farm specific knowledge 

advisories to every farmer in every village in India on a mobile is rapidly becoming available 

through the Digital India Network which scales to 250000 village Panchayats. This will 

provide the opportunity to map every field and create multi-dimensional village and farm 

specific databases through surveys, high resolution remote sensing, crowd sourcing and other 

means to characterize each field from the CSA perspective, before generating prescriptive 

advice. The network can effectively be a two way channel that provides not only prescriptive  

knowledge services to farmers but also enables flow of data from every farm to the big data 

Acc
ep

ted
 V

ers
ion



12 

 

technology platforms. These developments have made India a fertile ground for big data 

driven digital agriculture.  

 Thus, progressing towards a vision of connected, data-driven, and customized (to 

farm and farmer) climate smart agriculture in India is possible with the present state-of-art 

data science, technology, and systems approaches. But it is contingent on creating a national 

big data innovation ecosystem that combines heterogeneous, dynamic, and distributed 

datasets and analytics tools that radically enhance knowledge discovery for implementation 

of CSA. But, the present public institutional landscape of the National Agricultural Research 

System in India will need to change to assimilate the massive data, implement the data 

technologies and tools, and deliver data driven field-specific agronomic knowledge on CSA 

to individual farmers on mobiles or smart phones.  This will require newer institutional 

structures, systems, skills, and mindsets for agricultural technology generation and transfer. 

Some key issues to be addressed are: 

i. CSA requires a paradigm shift in the technology generation process in NARS from an 

empirical research station based field experimentation to a data and in silico modeling 

driven approach that complements research station and farmer-field experimentation. To 

enable such a paradigm shift, the public systems of NARS need to prioritize: (a) creation of 

nationwide public cyber infrastructure providing access to climate, soils, crops and 

genomics databases from centralized databases or clusters to enable creation of localized 

knowledge products for CSA, and (b) increase the value of data through policies that 

promote its authentication, data sharing and management to design CSA practices..    

ii. Recognize the complementarities of public and private big data for CSA. Public data from 

climate models downscaled to regional grids (25/50 km) are the basic input data for big data 

machine learning algorithms. The local farm and other circumstantial data and the machine 

learning algorithms developed to crunch out farm/field specific climate change assessments 

is usually private data. Similarly, the genomic data of major crops is available in public 

domain. But the corresponding phenomics data and the genomics big data algorithms that 

lead to gene sequence-trait associations for climate resilience are often in the private 

domain. The private data and the machine learning algorithms constitute a new category of 

rapidly emerging valuable IP in agriculture. 

iii. The choice of GCM and downscaling methods from amongst a plethora of web accessible 

models available is central to effective practice and scalability of CSA. Addressing 

thisdilemma requires a concerted effort by the public systems to identify standard datasets 

from specified GCMs after a comprehensive and comparative evaluation of downscaled 

climate projections by both climate scientists and agronomists. 

iv. The skill sets required to develop big data platforms and apply big data analytics tools are 

not normally available in NARS. These pertain to the domain of computer science and 

mathematics. Institutions of NARS need to develop capacities to interface and collaborate 

with specialists in these domains in universities and other national and state education and 

research institutions at least at two levels: (a) farm datastorage, validation and extraction for 

analysis by individual farms; (b) generate, validate, authenticate and convert analytics 

derived information to farm specific advisories in real time in a form that can be 

implemented by individual farmers.   

v. The creation of algorithms that crunch down GCM scale information to localized scales and 

scaling of digital knowledge delivery to millions of individual farmers is more in the 

domain of private sector. The proliferation of startups in agriculture in recent years is 

indicative of the increasing private sector role in digital agriculture. Institutions of NARS 

need to develop capacities to seamlessly interface and engage with the private sector, 

particularly the emerging start-ups, to ensure that they in turn engage responsibly with the 

farmers. 
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vi. The NARS is the only source of authenticated knowledge for farmers. But for ensuring 

sustainable value creation for the farmer for CSA, the public systems' role and responsibility 

for validation of knowledge delivered to farmers from digital sources only increases in the 

digital agriculture era. Newer institutional frameworks for such authentication will be 

needed as traditional authentication systems based on field trials at multiple locations, 

publication after peer review, etc., are time consuming and difficult to scale. 

 To conclude, the vision of a connected, data-driven, customized (to farm/farmer), 

digital and climate smart agriculture is achievable with the current state-of-art  data sciences, 

technologies and integrated agricultural systems approaches. But it is contingent on building 

policy and institutional environments in NARS that promote institutional and individual 

competencies for engagement across highly diverse biological, physical, chemical, 

mathematical, engineering and social sciences, and public and private institutions. 

Nonetheless, such an integration will be possible with judicious use of big data analysis 

platforms and Internet of things (IoT) protocols for addressing different agricultural 

production systems under changing climate.  
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Fig 1: Big data ecosystem 

  

 

Fig 2: State of art of climate downscaling to hyper local resolutions 
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Fig 3: Proposed schematic architecture of the integrated big data analytics framework for 

climate smart agriculture 
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